Decarbonising today's methanol operations to meet tomorrow's demands

Iain Roberts, Technology Manager – Low Carbon Solutions Johnson Matthey

02 CLEANPACETM Methanol

03 Decarbonising and debottlenecking

02 CLEANPACE Methanol

03 Decarbonising and debottlenecking

•

- drivers are increasing with opportunities for industry leaders

Europe

- High CO₂ prices forecast to exceed €100/te before 2030
- EU Innovation Fund: over €38bn to invest up to 2030
- Expansion of EU ETS to include maritime sector – demand for low carbon fuel

North America

- US tax credits for carbon capture (45Q)
 - Canada ETS CO₂ price will be CAN\$170/t in 2030
 - US and Canada government funding available for CCUS projects

MEA

- National strategies e.g.
 - Saudi Arabia and Bahrain net zero 2060
 - Oman and UAE net zero 2050
- EU Carbon Border Adjustment Mechanism (CBAM) adds cost to exports to EU from 2026

Global

- ESG goals: desire to do the right thing and demonstrate corporate responsibility to stakeholders
- Price premium for low carbon products and market demand, e.g. maritime fuel

02 CLEANPACE Methanol

Decarbonising and debottlenecking

CLEANPACE Methanol

- a differentiated carbon capture solution for methanol plants

Key features of our solution:

A pre-combustion CO₂ capture solution, combining JM's demonstrated ADVANCED REFORMING experience with proven 3rd party CO₂ capture to reduce cost and technology risk

Optional:

- Steam export
- Syngas or H₂ export

JM's ADVANCED REFORMING unit

Concept

- Offgases and NG trim fuel converted to a high hydrogen content fuel and CO₂ captured
- The low carbon fuel is used for SMR firing (+ other FHRs)
- End of pipe solution
- Minimal changes to existing MeOH plant

Benefit of **CLEANPACE** Methanol is high performance at low CapEx - exceptional capture rate, for multiple plants, with low-risk

Lower CapEx and plot space
requirement than post
combustion capture

up to 95% CO₂ emission reduction

Economy of scale shared CapEx with a common unit serving multiple plants

Using only **well proven** technologies at scale

Flexible location to ease implementation into an existing plant site

> Johnson Matthey Inspiring science, enhancing life

Can be combined with **capacity expansion** to support increased methanol demand

JM Johnson Matthey Inspiring science, enhancing life

01 Drivers for methanol decarbonisation

02 CLEANPACE Methanol

O 3 Decarbonising and debottlenecking

Decarbonising and debottlenecking - through **CLEANPACE** Methanol

> The SMR is often the restriction to capacity expansion

- CO_2 co-feed could achieve up to ~20% expansion (using excess H₂ from SMR)
- > Studies⁽¹⁾ show debottlenecking with extra syngas, could achieve 30% expansion
 - The extra syngas can be provided by the CLEANPACE unit

> Thus decarbonisation AND capacity expansion, can be achieved

Case study

- using syngas from **CLEANPACE** unit to achieve 30% debottleneck

>TWO CASES ANALYSED

- 1) CLEANPACE only
 2) CLEANPACE + 30% debottleneck
- For Case 2, the following modifications are assumed:
- Once through converter
- Parallel distillation

BASIS

- 3000 MTPD (from natural gas)
- Middle East no carbon tax
- Scope $1 = 0.8 \text{ teCO}_2/\text{teMeOH}$
- CLEANPACE CO_2 capture = 90%
- 50% export to EU => CBAM impact
- No premium for low carbon methanol
- Sales margin \$200/teMeOH

Case study results Basis: US $\$ / Natural gas 1.5 $\$ /MMBTU / Power 0.05 $\$ /kWh / CO $_2$ T&S 15/teCO2

	Case 1 Decarbonisation			Case 2 Decarbonisation + Debottleneck		
CO ₂ tax – CBAM (\$ /teCO ₂)	100	150	200	100	150	200
CO_2 to storage (kte /year)	720			720		
Additional MeOH product (kte /year)	0			300		
Incremental OpEx - CLEANPACE (\$m /year)	-21			-27		
CO_2 transport and storage cost (\$m /year)	-11			-11		
Avoided CO ₂ tax - CBAM (\$m /year)	36	54	72	36	54	72
Incremental product margin (\$m /year)	0			60		
Net annual cash flow (\$m /year)	4	22	40	58	76	94
CapEx – ISBL + OSBL (\$m)	220			350		
NPV (13 year @ 9% discount rate) (\$m)	-179	-82	15	-8	89	186

02 CLEANPACE Methanol

Decarbonising and debottlenecking

Key take aways - for your decarbonisation journey

> Johnson Matthey Inspiring science, enhancing life

CLEANPACE Methanol is a new solution to decarbonise existing methanol plants, based on well proven technologies

Business case for decarbonisation improves with time, as emitting CO₂ becomes more expensive

There can be a positive business case **today**, when decarbonisation is combined with capacity expansion

Thank you

Iain Roberts, Technology Manager – LCS Sebastiaan van Haandel, Business Development Manager – LCS Johnson Matthey

