

Benefits of new generation methanol synthesis catalyst in existing methanol plants

Madhan Janardhanan Principal Process Engineer

Agenda

01	Methanol synthesis basics
02	Catalyst deactivation
03	Methanol synthesis loop designs
04	Examples
05	Conclusion

JM

Methanol synthesis Reactions

Methanol is mainly produced from CO_2 and H_2 $CO_2 + 3H_2 \rightleftharpoons CH_3OH + H_2O$ $\Delta H_{298K}^o = -49.5 \text{ kJ/mol}$

CO is shifted to CO_2 and then to methanol

 $CO + H_2O \rightleftharpoons CO_2 + H_2$ $\Delta H_{298K}^o = -41.2 \text{ kJ/mol}$

Some methanol is synthesised from CO and H_2

 $CO + 2H_2 \rightleftharpoons CH_3OH$

 $\Delta H_{298K}^o = -90.6 \text{ kJ/mol}$

Methanol synthesis Kinetic and thermodynamic considerations

For good conversion what conditions are required?

	Equilibrium	Kinetics
Temperature	Low	High
Pressure	High	High
Catalyst activity		High

So there is a conflict for temperature!

Catalyst deactivation Thermal sintering

Causes for catalyst deactivation

- poisoning (sulphur, carbonyl & chloride)
- thermal sintering

Reaction rate is dependent on temperature

- hot loop gas increases the rate of reaction as well as sintering
- cool loop gas slows the rate of reaction as well as sintering
- thermal sintering of catalysts is inevitable

Impact of catalyst deactivation

- loss of production
- excess loop purge gas to fuel
- rate limiting in plants with combined reforming front end and low circulation methanol synthesis loop

Methanol synthesis loop designs

The methanol synthesis loop designs falls within one of the two categories listed below:

High circulation loops

will have a circulation ratio of about 6.

methanol concentration exiting the converter will be between 5 and 6 mole %

will contain one of the following converters

- advanced reactor concept (ARC)
- radial steam raising converter (rSRC)
- tube cooled converter (TCC)
- isothermal methanol converter (IMC), both steam raising and gas cooled
- variobar

Low circulation loops

will have a circulation ratio of about 2.

methanol concentration exiting the converter will be between 10 and 12 mole %

will contain one of the following converters

- axial steam raising converter (aSRC) or
- gas cooled converter (GCC) installed in tandem with aSRC

Examples

Basis

Syngas generation	SMR + CO2 injection		Combined reforming	
Makeup syngas composition	Inerts CO ₂ CO H ₂	3.2 mol% 9.5 mol% 18.7 mol% 68.6 mol%	Inerts CO ₂ CO H ₂	1.6 mol% 8.1 mol% 22.0 mol% 68.3 mol%
Circulation ratio		≈ 6	≈ 2	
Converter type	radial steam rising converter (rSRC)		a gas cooled converter (GCC) installed in tandem with axial steam rising converter aSRC	

JM licensed high circulation loop with radial steam raising converter

High circulation loop Loop carbon efficiency

High circulation loop

Catalyst bed exit temperature

290 285 280 0 275 270 265 260 255 250 245 0 1 2 3 4 Catalyst age, year → KATALCO 51-9 → KATALCO 51-102

Equilibrium temperature

Low circulation loop with axial steam raising converter (aSRC) and gas cooled converter (GCC)

At **BOL** the **aSRC** is doing more work

- High peak temperature
- Catalyst activity falls quickly

At **EOL** the **GCC** is doing more work

- High exit temperature
- High equilibrium temperature

Low circulation loop Loop carbon efficiency

13

Low circulation loop

Methanol equilibrium vs loop efficiency and methanol exit the converter

3D surface graph representation

15

Conclusion

- JM has allowed customers to increase production and/or extend catalyst lives by slowing the rate of sintering in its new KATALCO 51-102 catalyst
- The slow deactivation of **KATALCO 51-102** allows the catalyst bed to operate at consistently lower temperatures, which maintains good equilibrium conversion at favourable reaction rate
- The low equilibrium temperatures helps to
 - Keep the carbon efficiency high in low circulation loops so the fuel balance is closed for longer without flaring, allowing for at least 4 year catalyst change over cycles
 - Maintain the high loop carbon efficiency for longer, achieving 8 years catalyst life, which maximises methanol production in high circulation loops
- Consistent low temperature operation will also reduce the formation of by-products.

Johnson Matthey ProcessWise Webinars

Questions and Answers

Please submit your questions, feedback and suggestions for future webinar topics through the Team Live Events Q&A panel on the right of your screen

