

Presentation to Analysts & Investors

Johnson Matthey Technology Centre Sonning Common 26th January 2005

Johnson Matthey

Neil Carson Chief Executive

JM Executive Board

- Neil Carson
- John Sheldrick

David Morgan

Dr Pelham Hawker

Larry Pentz

- Chief Executive
- Group Finance Director
- Executive Director,
 Corporate Development, Central Research and Colours & Coatings
- Executive Director, PCT
- Executive Director, ECT

Other Senior Management

- **Dr Jack Frost**
- **Dr Barry Murrer**
- **Dr David Prest**
- Ian Godwin

- Director, Fuel Cells
- Director, JMTC
- Director, HDD
- Investor Relations

Programme

- 10.00 Welcome and trading update (Neil Carson)
- 10.15 ECT and Light Duty Diesel (Larry Pentz)
- 10.30 Heavy Duty Diesel (David Prest)
- 11.00 Coffee Break
- 11.15 Fuel Cells Update (Jack Frost)
- 11.45 The Hydrogen Market (Pelham Hawker)
- 12.00 Hydrogen Storage (Barry Murrer)
- 12.30 Site tour
- 13.30 Buffet Lunch
- 14.15 Visit Wrap Up Q&A
- 14.30 Depart for station

Current Trading

- Trading in line with expectations
- Catalysts division continuing to benefit from growth in diesel in Europe
- Demand in China down in Q4 2004. Rest of Asia ahead
- Good trading conditions for pgms
- Pharmaceutical Materials slightly down
- Average US dollar rate worse than first half
- Confident of growth in full year earnings (before exceptional items and goodwill amortisation)

Johnson Matthey

Larry Pentz, Executive Director

Environmental Catalysts and Technologies

Environmental Catalysts and Technologies

Environmental Catalysts and Technologies

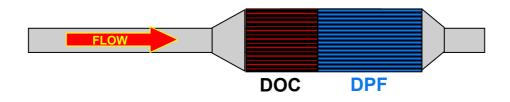
- Continued growth in Autocatalysts
 - Tightening of legislation
 - High technology catalysts. PGM thrifting
 - Asia
- Growth in light duty diesel
 - Increasing share of light vehicle market
 - Particulate control
- New heavy duty diesel market
 - On road
 - Off road

10

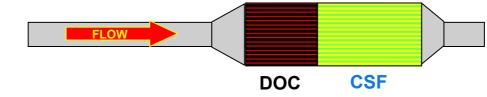
Light Duty Diesel Continued Market Growth

- Europe
 - 48% share of passenger car sales in 2004 and rising
 - Diesel growing in all car segments with fastest growth in lower medium and small car segments
- Asia
 - Japanese and Koreans now diesel producers
 - Korea set to lift regulatory barrier to diesel car sales
 - Already Asian market for diesel (1 tonne trucks)
- US
 - Potential via light truck sector and imports
 - CAFE requirements

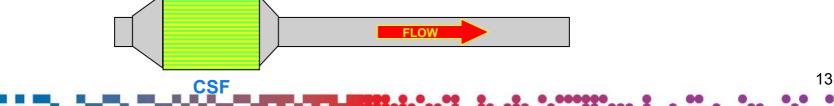
Light Duty Diesel


Emissions Control to Move from Catalysts to Filter Solutions

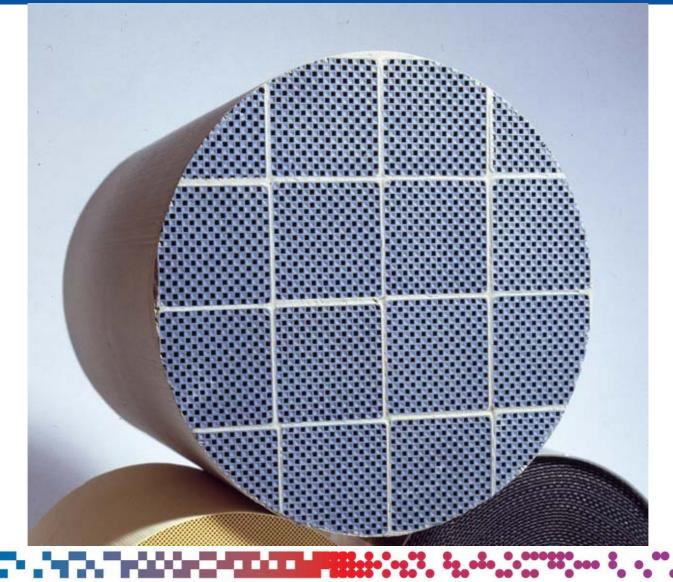
- Demand Side Drivers
 - Health concerns over diesel particulate matter (PM) now a major focus for air quality management
 - Availability of competitive diesels with particulate filters
 - Proactive response from European Governments (Germany, France, etc)
 - Legislation expected to force filter use (Euro 5, 2010)
- Supply Side Considerations
 - Technology is challenging and not yet matured
 - Vehicle uptake still limited by filter availability
 - For catalyst suppliers = major value-add opportunity requiring investment


ne al les els des alegans de la companya de la comp

Light Duty Diesel Evolution of Technology


- Pre-Filter: DOC only
- Generation 1: Fuel Additive Type

Generation 2: DOC + CSF



Generation 3: CSF-only (integrated Oxidation Catalyst)

Light Duty Diesel Catalysed Soot Filter

JM

14

Heavy Duty Diesel January 2005

Dr David Prest Director, HDD

HDD Market Sectors and Legislation

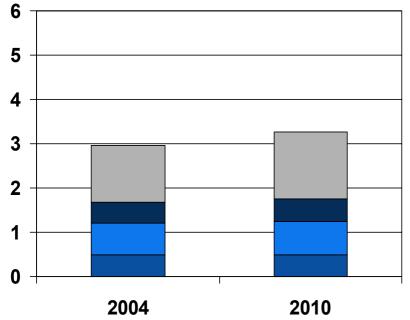
HDD Two market segments in each region

HDD: Generally vehicles > 3.5te gvw, cylinder displacement >1 litre

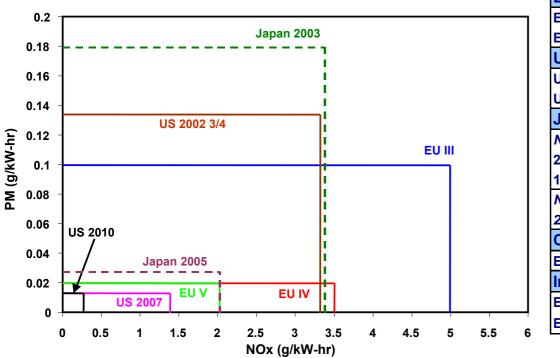
- OE
 - Regulatory compliance
 - Technical approval by OE
 - Includes option-fit

 Supply chain via system integrators / canners

- Retrofit
 - Local legislation
 - Approval by verifications
 - Incentives & restrictions for users
 - Supply chain via agents or direct



No of Vehicles (>3.5te)


millions

JM

HDD On-road regulation development

	New Models	All Models
Europe		
Euro IV	Oct-05	Oct-06
Euro V	Oct-08	Oct-09
United States		
US2007	Jan-07	Jan-07
US2010	Jan-10	Jan-10
Japan		
New Short Term		
2.5-12t	Oct-03	Oct-03
12t +	Oct-04	Oct-04
New Long Term		
2.5t+	Oct-05	Oct-05
China		
Euro III - selected cities	2008?	
India		
Euro III - selected cities	Apr-05	
Euro III - nationwide	2010?	

19

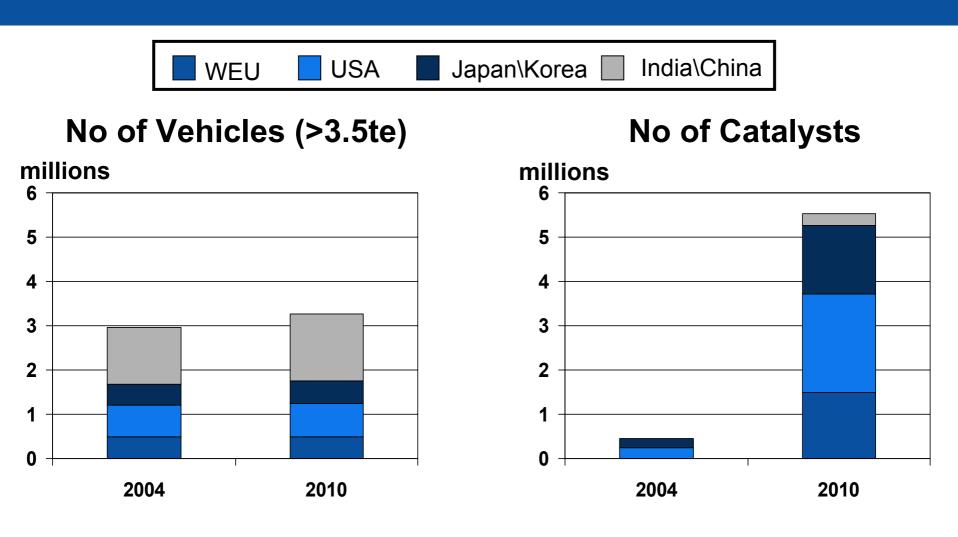
HDD World Diesel Fuel Standards

20

Sulphur Content in PPM

Country	Year																
		95	96	97	98	99	2000	01	02	03	04	05	06	07	08	09	10
European Union								<mark>350</mark> 50				50	0 10				
USA	500 15																
Australia	500	500 50															
China	2000 (A	2000 (Ave 800) 350 for Beijing															
Hong Kong - China							50						10				
India (11 Major Cities)							500					350					50
India	2500											500					
Japan	2000			500							50				10		
Korea	2000								130			50	30				

<mark>|</mark> < 500 ppm


50 ppm

Less than 30 ppm

HDD OE Market

21

Source Global Insight & Johnson Matthey

HDD Technologies

HDD Johnson Matthey's Technology Toolbox

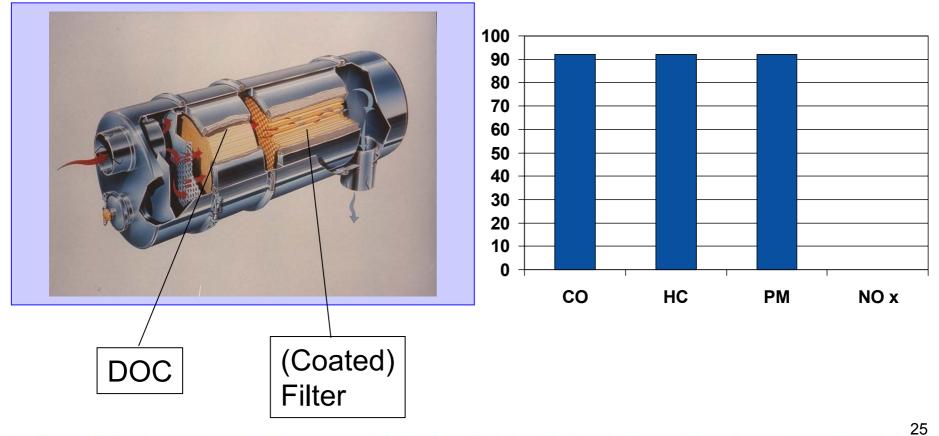
	со	НС	PM	NOx
DOC – Diesel Oxidation Catalyst	x	X	x	
CRT [®] – Continuously Regenerating Trap (DOC+ filter)	x	x	x	
CCRT [®] – Coated CRT (DOC+coated filter)	x	x	x	
SCR – Selective Catalytic Reduction				x
EGR – Exhaust Gas Recirculation				x
SCRT [®] (SCR+CRT)	x	x	x	x
EGRT [®] (EGR+CRT)	x	x	x	x
NAC – NOx Adsorber Catalyst	X	X		x

Red = JM patents

23

HDD **OE Prime Path Options**

HDD (on	road)														
	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	
Europe			SCR			SCR			SCR +	- DPF					
		EGR + D	PF			EGR + D	PF								
		EGR + D	00		EGR + DOC										
USA		EGR			EGR + D	PF		NAC + D SCR + D							
								3CK + D							
Japan		EGR			EGR +DI	PF		SCR + D	PF						
- apan					SCR				IAC + DPF						


Non Road Mobile Machinery	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
USA and Europe				DOC	+ DPF /	CSF	SCF	<mark>R + DPF</mark> /	'NAC + D	PF

Note: "DPF" covers DOC + DPF (CRT[®]), DOC + CSF (CCRT[®]) and CSF - only

24

CRT[®] / CCRT[®]

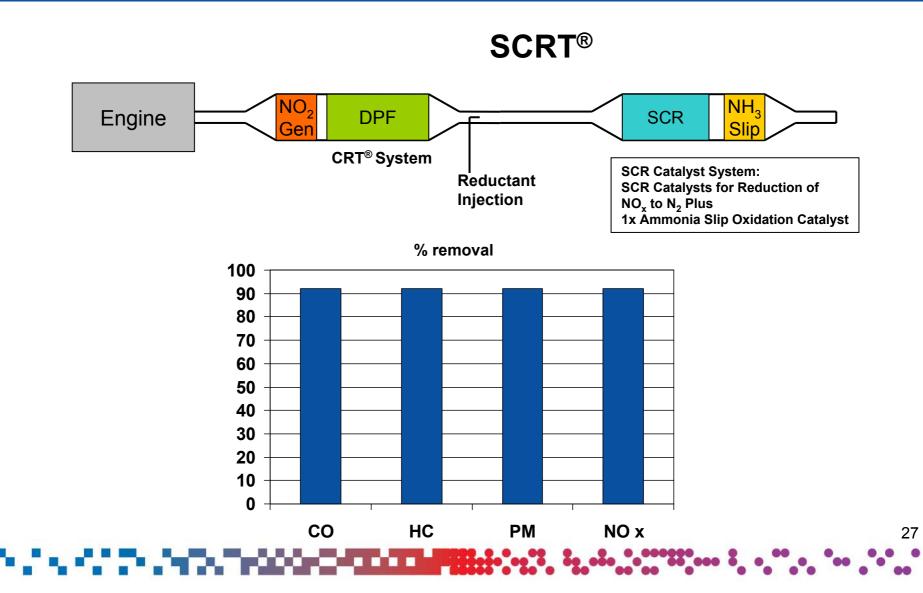
% removal

CRT[®] / CCRT[®]

Mumbai

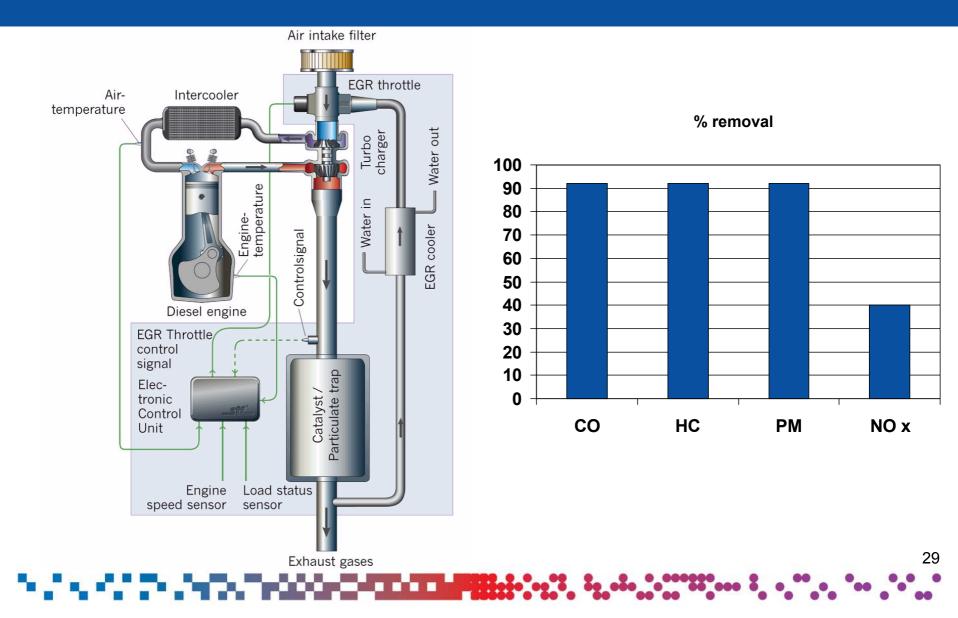
Seoul

Seattle



SCRT®

SCRT[®]

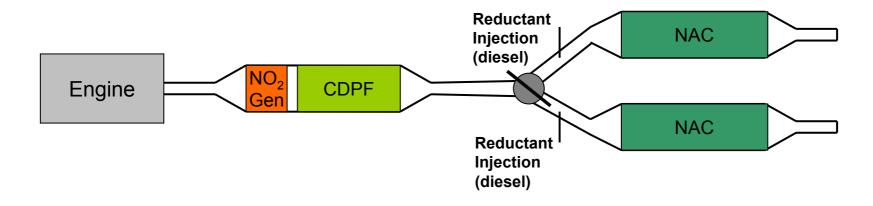

Paris

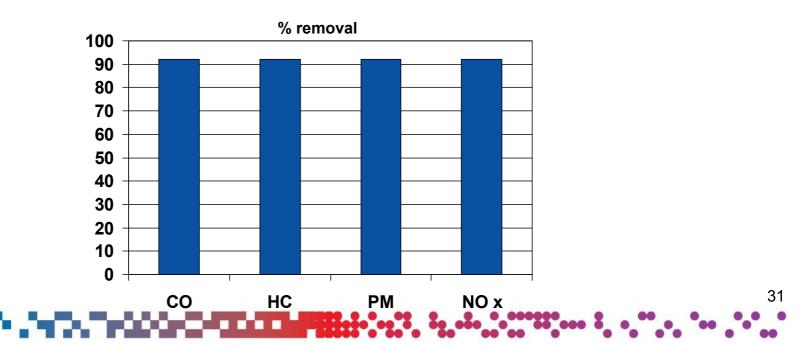
London

EGRT®

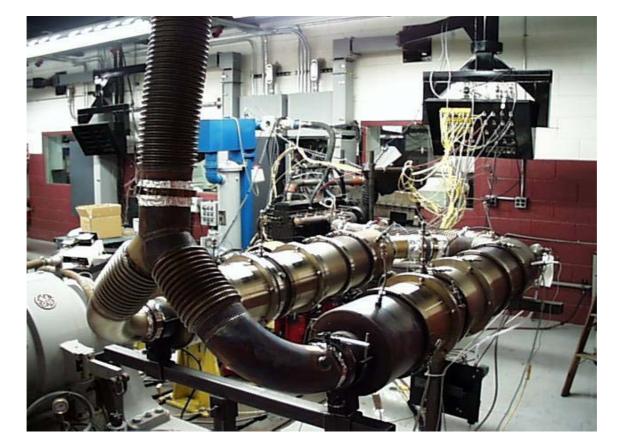
EGRT®

California

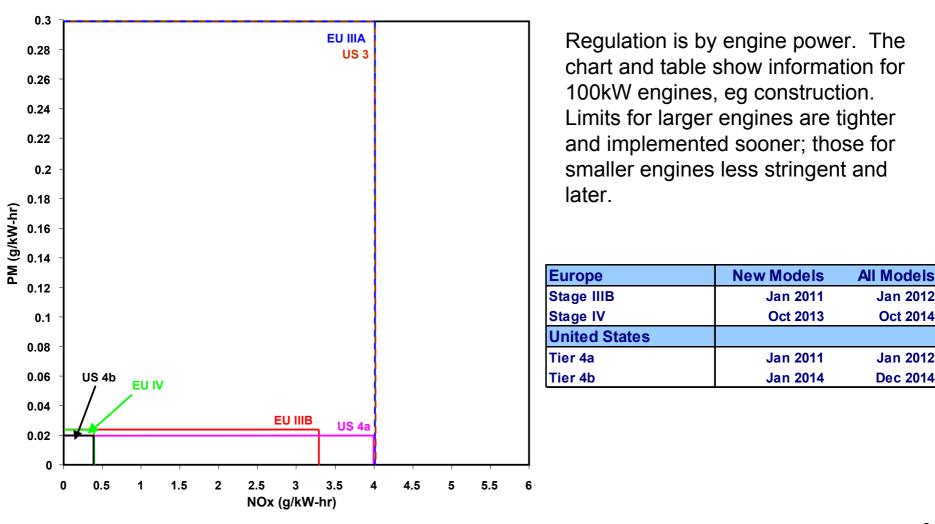

30


EGRT[®]

NAC + CCRT®



NAC Johnson Matthey Development Facility



Beyond 2010 The Off Road or Non Road Sector

JM

- Generally covers engines used in mobile sources such as:
 - Construction machines
 - Materials handling equipment
 - Mining and quarrying
 - Agricultural and forestry equipment
 - Airport ground equipment
 - Locomotives and trains
 - Inland boats
- Similar number of engines used in off road as in buses & trucks
- Legislation requiring emissions after treatment is in place in EU and US and will take effect from 2011
- Similar technology requirements

HDD Non Road Regulation Development

34

Heavy Duty Diesel Summary

- OE sales start in Europe and Japan mid 2005, followed by US 2007
- Retrofit sales continue throughout the period
- By end of calendar 2008, HDD market sales \$600m excluding precious metals
- By end of calendar 2006, market sales should be around \$200m
- Off road OE regulations begin 2011
- JM has a full range of technologies for emission control
- JM has extensive retrofit experience and OE relationships
- JM will be market leader

Update on Market Developments And Swindon Facility

Dr Jack Frost Director, Fuel Cells

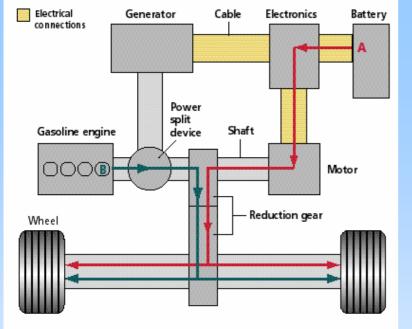
Key recent developments in the market

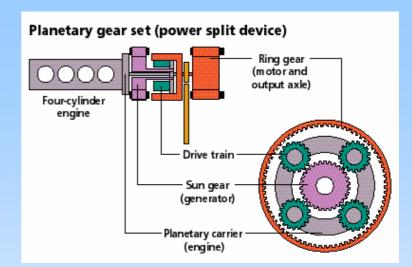
- Substantial interest in hydrogen drives fuel cell automotive programs
- Hybrid vehicle success show the way for fuel cell vehicles
- Experience in real applications provides guidance on improvements in fuel cell systems and MEA materials
 - Durability issues delay the anticipated early market for stationary applications
 - Automotive plans on track but all car companies emphasise need for further advances before key commercialisation decisions.
- Considerable interest in smaller early markets eg DMFC and battery replacement

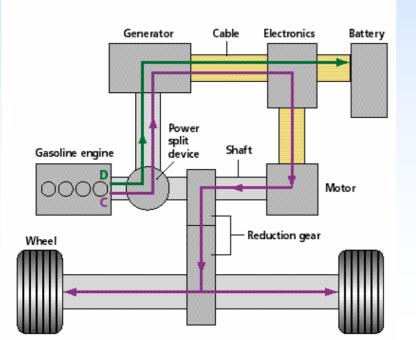
Hydrogen

- Hydrogen addresses many of society's needs
 - reduce oil and gas imports energy security
 - reduce CO₂ emissions global warming
 - improve local air pollution quality of life
 - prepare for (ultimately) limited fossil fuel resources
- Hydrogen fuel benefits the car companies
 - Much smaller environmental signature for the car
 - More competition in fuel supply

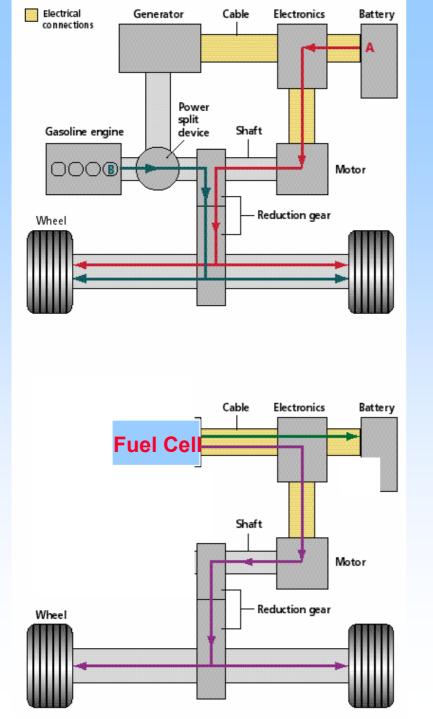
Hydrogen and Fuel Cell Vehicles


- If hydrogen is the preferred fuel fuel cells are the preferred power source
- For the fuel cell car this raises 3 questions
 - Source and efficiency of (renewable) hydrogen production
 - Hydrogen storage
 - Hydrogen supply infrastructure
- Car companies emphasise the hydrogen "problem" but believe the Fuel Cell car is the way forward.



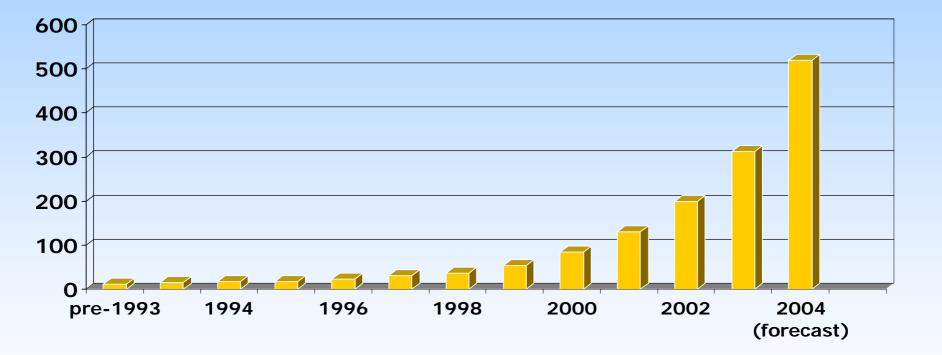

Hybrid vehicles

- Hybrids are the route to fuel cell vehicles
 - Electric vehicle components, supply, cost and reliability
 - Customer and society acceptance
 - leading to competition by the OEM's
 - Complex configuration and expensive batteries make fuel cell substitution attractive
- Hybrid introduction experience curve provides a model for fuel cell introduction



Source: Toyota Motor Company

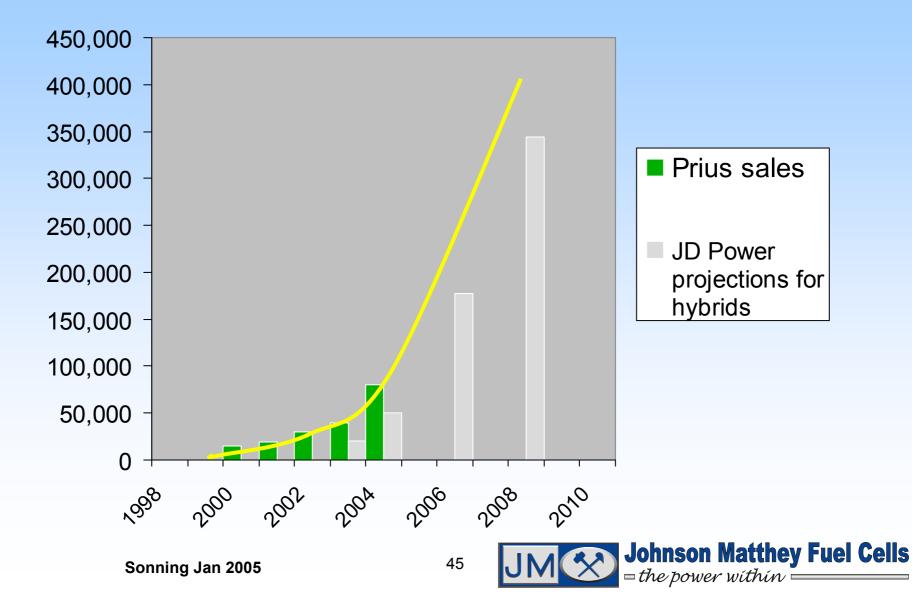
41



Some routes to Fuel Cell Vehicles

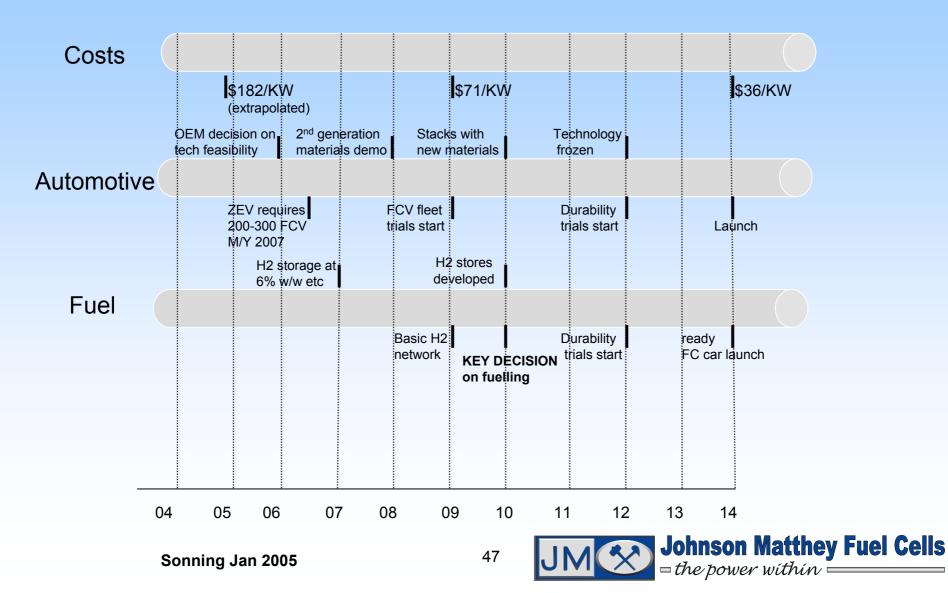
- 1. 100% fuel cell car
- 2. Auxiliary power fuel cell
- **3.** Fuel Cell Hybrid cars

Numbers of fuel cell cars to date



Source: General Motors

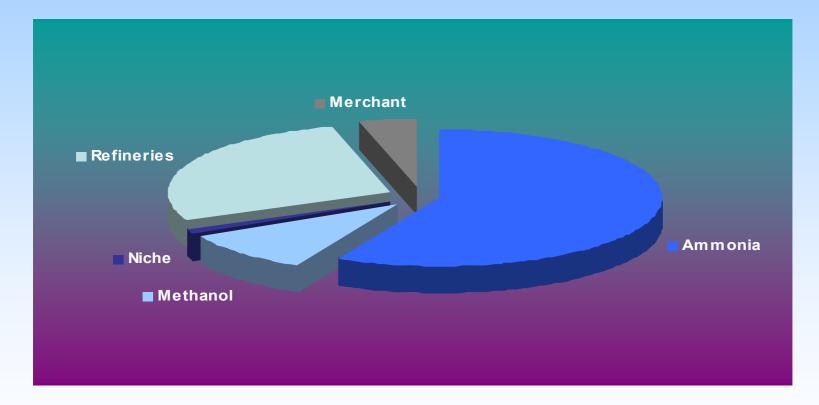
Hybrid car annual production



Automotive fuel cells time line

Conclusions

- Market development in stationary is slower than hoped
- Early market smaller and more fragmented
- Automotive programs on schedule
- Strong drivers underpin the market



The Hydrogen Market

Dr Pelham Hawker Executive Director, PCT

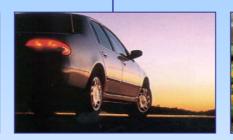
Global Hydrogen Consumption

Source: SRI International – August 2004. World consumption of intentionally produced or merchant hydrogen

Global Hydrogen Consumption

Ammonia

Fertiliser


Explosives

Methanol

Acetic Acid

Formaldehyde

MTBE

Refining

Niche & future

- Edible Oils & Fats
- Electronics
- Gas To Liquids
- Coal To Liquids
- Fuel Cells
- Clean Feedstock
- Political Uncertainty
- Global Warming

	_			
•	Ро	pu	latic	n

• Mining

- Construction
- Fuel
- Regulation (US)
- Clean Fuels

Purify Oil

Upgrade Oil

- Tighter Engine Specs
- Heavier Crude Oil

JM Participation in Hydrogen Production

Ammonia

- 369 plants
- £125m pa catalyst market
- JM Global #2

Methanol

- 89 plants
- £30m pa catalyst market
- JM Global #1

Refining

- 670 plants
- £80m pa catalyst market
- JM Global #2

Niche & future

 Enormous potential from Gas To Liquids

Global Hydrogen Production Today

Steam Reforming (90% of intentionally produced hydrogen)

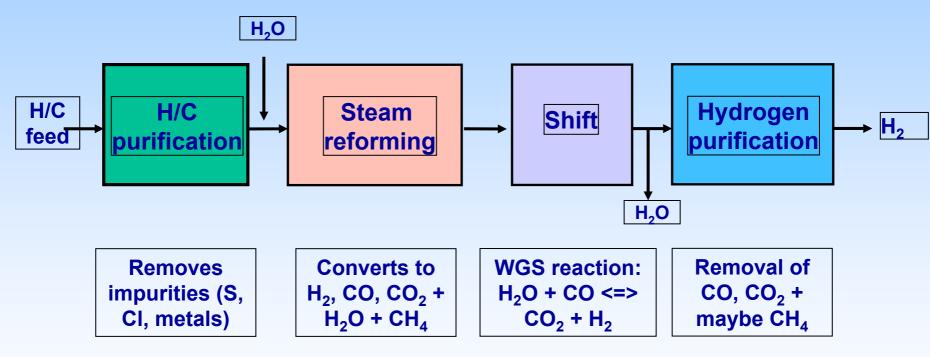
- Primary method of manufacturing hydrogen
- Natural gas or naphtha is feedstock

Partial Oxidation

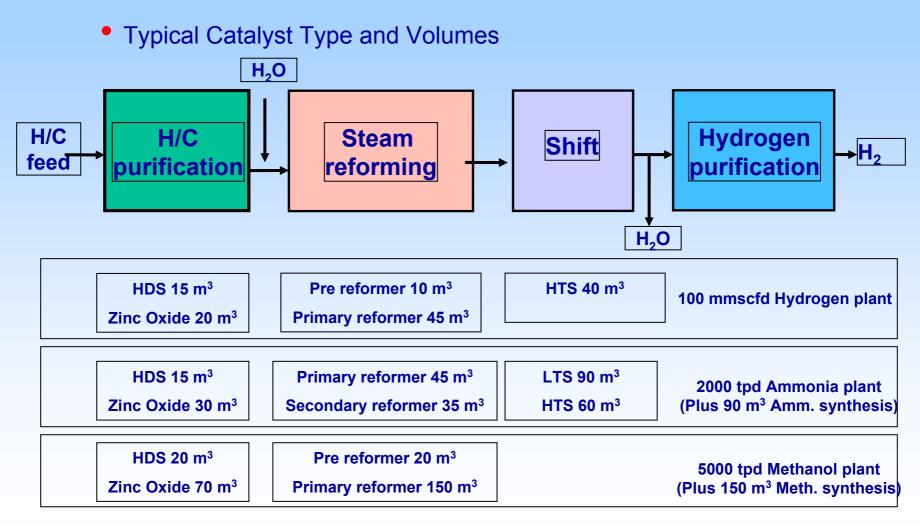
 Non Catalytic process reacting hydrocarbons at high temperatures & pressures to make Syngas

Bi-Product Generation

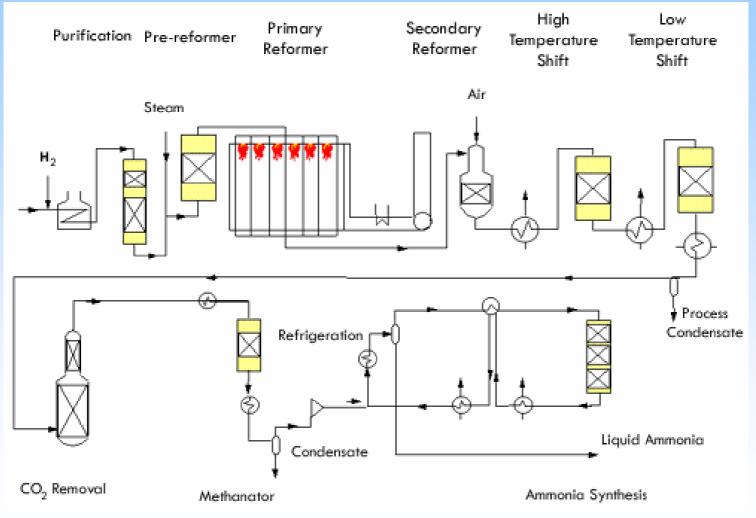
- Catalytic Reforming usually directly consumed
- Requires sulphur and chloride purification and PGM recycle


Electrolysis

- Very small and high electricity requirement
- Primary use to produce high purity hydrogen


Steam Reforming H₂ plant

Simplified process step and reaction



Steam Reforming H₂ plant

Ammonia Plant Flowsheet

Catalyst Improvements

- Generic:
 - Increase selectivity, activity, stability
- Purification (PURASPEC[™]):
 - Trend to tighter impurity levels (ppb)
 - Improve poison pick up per unit volume
- Steam reforming:
 - Improvements in heat and mass transfer
 - Increase throughput of process
 - Increase ability to handle process upsets
 - Increase activity for operating cost and capital cost saving
- High Temperature Shift:
 - Increase stability to survive boiler leaks
 - Increased activity to generate more hydrogen
- Low Temperature Shift:
 - Increased selectivity to reduce methanol bi-product
- Methanol Synthesis:
 - Increased activity to produce more methanol

Latest Syngas Research Rig

Gas Heated Reformer

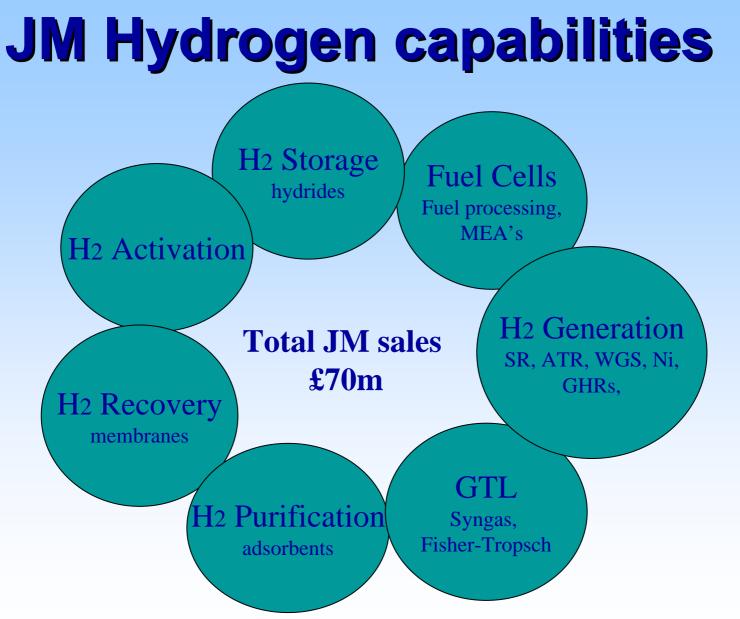
- Capital savings:
 - 5-10% capital advantage (\$1bpd in GTL)
- Efficiency savings:
 - 7.5% feedstock efficiency (\$0.3 bpd in GTL)
- Reduction in CO₂ emissions:
 - 25% reduction in typical GTL plant
 - Significant emission credits in some locations
- Technology status:
 - Proven mechanically (15 year references)
 - More aggressive process conditions in GTL requires improved metallurgy (MDU)

JM GHR at Coogee, Australia

Material Demonstration Unit

JM Johnson Matthey Catalysts

Davy Process Technology


- World-class technology
- High performance catalysts
- Conceptual design and licensing
- Basic and detailed engineering
- Procurement and construction
- Commissioning and start-up
- Ongoing operational support

Strengths that are unique and complementary

- Know-how in purification, steam and compact reforming, methanol technology and catalysis
- Proven technology including that used for the largest plant currently under construction - 5400 tpd
- Extensive design & construction experience
- Off-shore oil and gas expertise

Dr Barry Murrer Director, JMTC

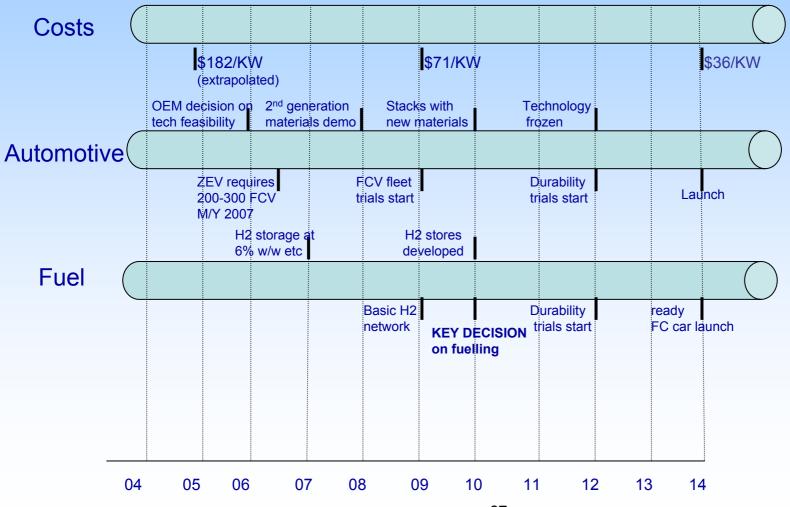
The problem

- For 500km range a fuel cell powered car needs to store 6kg of hydrogen on board (cf ~35 kg gasoline for ICE powered vehicle)
- 6kg hydrogen is equivalent to 81,000 litres of hydrogen gas at atmospheric pressure –6 times the volume of this room

Hydrogen storage –a technology barrier?

- UK DTI acknowledges that '..hydrogen storage is the fundamental technical barrier to the more widespread use of hydrogen' <u>www.dti.gov.uk/renewables/publications/pdfs/technologies/tech1</u> <u>1.pdf</u>
- US DoE '...hydrogen storage is a key enabling technology. None of the current technologies satisfy all the H storage attributes sought by manufacturers and end users...' <u>http://www.eere.energy.gov/hydrogenandfuelcells/pdfs/national</u>

h2_roadmap.pdf



What do we need? US hydrogen storage roadmap

store parameter	units	2005	2010	2015
Specific energy	kgH ₂ /100kg system	4.5	6	9
Energy density	gH ₂ /I system	36	45	81
Storage system cost	\$/kgH ₂ capacity	200	133	67
Refuelling rate	kgH ₂ /min	0.5	1.5	2
Loss of H ₂	(g/h)/kg stored	1	0.1	0.05
Cycle life	Cycles(1.4 to full)	500	1000	1500

Source: US Department of Energy

Automotive fuel cells time line

What have we got? Options for on-board storage

Compressed hydrogen

Liquid hydrogen

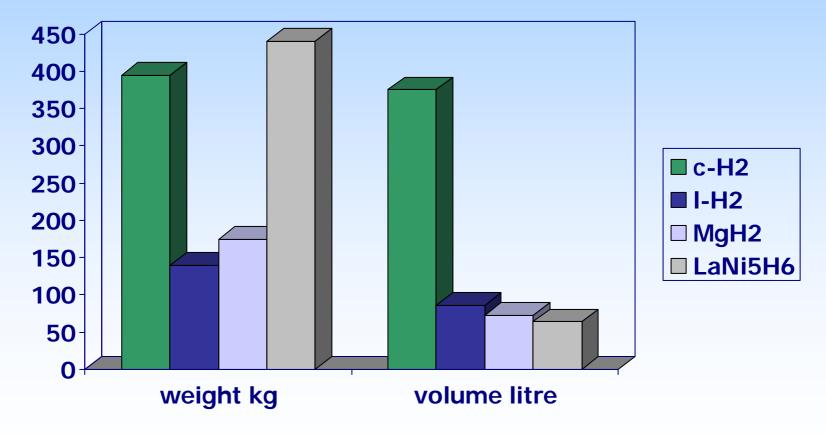
Solid state hydrogen store

Compressed hydrogen

- Hydrogen in steel or composite cylinders
- High pressure
- Heavy and bulky
- Good for buses, demonstration cars

Liquid hydrogen

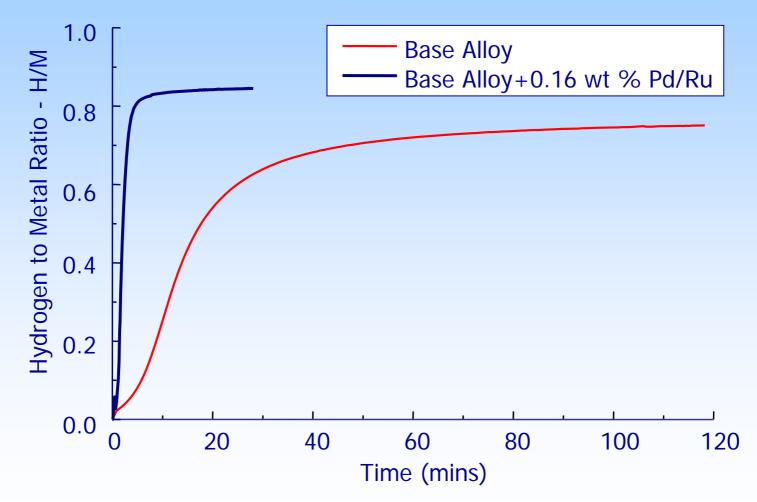
- Cryogenic storage at 253 deg C
- 30% of the energy in hydrogen is needed to cool it to this temperature
- Constant 1-3% boil off rate
- Being evaluated in some demonstrators, but unlikely to be viable



Solid state hydrogen stores

- Hydrogen stored in a metal alloy with chemical bonds to metal atoms
- Can be reversible
- Can store more hydrogen than the same volume of liquid hydrogen
- Can operate close to atmospheric pressure
- Can operate from –20 to + 300 deg C depending on metal alloy
- But... no current alloy meets all criteria for commercial use

Storage options compared: 6 kg H₂, system weight and volume



Known reversible solid state hydrogen stores

- AB₅ eg LaNi₅H₆ room temperature but only 1.36 wt% hydrogen
- AB eg FeTiH₂ 1.87 wt% hydrogen
- MgH₂ 7.6 wt % hydrogen, but only works at 300 deg C –needs to absorb/desorb hydrogen faster at lower temperature to be useful
- No known, reversible, safe hydrogen stores with higher capacity

The effect of Pd activation on LaNi₅

Latest estimate of JM position on roadmap

store parameter	units	2005	2010	2015
Specific energy	kgH ₂ /kg system%	4.5 √	6	9
Energy density	gH ₂ /I system	36 √	45	81
Storage system cost	\$/kgH ₂ capacity	200 🔨	133	67
Refuelling rate	kgH ₂ /min	0.5 🔨	1.5 √	2
Loss of H ₂	(g/h)/kg stored	1 √	0.1 √	0.05 🗸
Cycle life	Cycles(1/4 to full)	500 √	1000	1500

UK hydrogen energy strategic framework- December 2004

www.dti.gov.uk/energy/sepn/hydrogen.shtml

Glossary of Terms

Product Technologies		
CRT®	Continuously regenerating trap	
CCRT®	Coated continuously regenerating trap	
CSF	Catalysed soot filter	
DOC	Diesel oxidation catalyst	
DPF	Diesel particulate filter	
EGR	Exhaust gas recirculation	
EGRT®	EGR + CRT [®]	
NAC	NOx Adsorber catalyst	
SCR	Selective catalytic reduction	
SCRT®	Selective catalytic reduction + CRT [®]	
Emissions		
СО	Carbon monoxide	
НС	Hydrocarbons	
NOx	Nitrogen oxides	
РМ	Particulate matter	
General		
HDD	Heavy duty diesel	
OE	Original equipment	
Fuel Cells		
DMFC	Direct methanol fuel cell	
ICE	Internal Combustion engine	
LCA	Life cycle analysis	
MEA	Membrane electrode assembly	
PEM	Proton exchange membrane	
	J	

