

Presentation to Analysts / Investors

Johnson Matthey Technology Centre, Sonning Common 28th / 29th January 2009

Cautionary Statement

This presentation contains forward looking statements that are subject to risk factors associated with, amongst other things, the economic and business circumstances occurring from time to time in the countries and sectors in which Johnson Matthey operates. It is believed that the expectations reflected in these statements are reasonable but they may be affected by a wide range of variables which could cause actual results to differ materially from those currently anticipated.

Overview and Trading Update

Neil Carson Chief Executive

JM Executive Board

- Neil Carson Chief Executive
- John Sheldrick Group Finance Director
- Larry Pentz Executive Director, Emission Control Technologies
- Dr Pelham Hawker Executive Director, Process Technologies and Fine Chemicals & Catalysts
- David Morgan
 Executive Director, Corporate Development and Central Research

Other Senior Management

- **Bill Sandford Division Director, Precious Metal Products**
 - **Neil Whitley Division Director, Process Technologies**
 - Technology & Business Development Director, ECT -
 - Fuel Cell Today
 - Director, Johnson Matthey Fuel Cells -
 - Director, Technology Centre
 - Manager, Low Carbon Research Group
 - Strategic Development Director, Johnson Matthey Fuel Cells
 - **Director**, Investor Relations
 - **Public Relations Manager**

- Dr David Prest
- Jeremy Coombes
- **Dr Jack Frost**
- **Dr Barry Murrer** ۲
- Sue Ellis
- Martin Green
- Ian Godwin ۲
- **Dr Sally Jones**

Strategic Opportunities for Environmental Technologies

- Existing regulations for transport and stationary source engines will continue to tighten globally
- Substantial market expansion in heavy duty diesel (HDD) expected over the next six years
- Increasing regulation for NOx control in other markets
- Clean fuels from coal and gas
- CO₂ is new pollutant opportunities in fuel cells, carbon sequestration and low carbon technology
- Other pollutants sulphur, mercury, nitrous oxide (N₂O), methane

Programme

- 09.40 Overview and Interim Management Statement (Neil Carson)
 - **Opportunities in NOx Emission Control**
- 09.50 Argillon Acquisition Overview (Larry Pentz)
- 10.00 Heavy Duty Diesel Emission Control (David Prest)
- 10.30 Future Opportunities in Stationary Emission Control (SEC) (Larry Pentz)
- 11.00 Coffee Break Fuel Cells
- 11.15 Fuel Cell Today (Jeremy Coombes)
- 11.20 Johnson Matthey Fuel Cells Update (Jack Frost) Coal to Products and Low Carbon Technology
- 11.40 Coal to Products and Low Carbon Technology (Barry Murrer)
- 12.10 Low Carbon Technologies Future Opportunities (Sue Ellis)
- 12.30 Tour of Technology Centre
- 13.40 Lunch
- 14.20 Wrap Up and Q&A
- 14.30 Depart for Reading Station

Interim Management Statement

- Summary Results for third quarter of 2008/09
 - Sales excluding precious metals slightly ahead
 - Operating profit* 4% below last year
 - Profit before tax* 7% below last year
 - Cash flow positive

* Before amortisation of acquired intangibles

Johnson Matthey

Estimated Light Vehicle Sales and Production

for the 3 months to 31st December 2008

		Qua	arter ended 31 st I	December
		2008 millions	2007 millions	Change %
North America	Sales	3.1	4.5	-31.1
North America	Production	2.7	3.6	-25.0
Total Europe	Sales	4.2	5.5	-23.6
Total Europe	Production	4.2	5.7	-26.3
Asia	Sales	4.3	4.8	-10.4
Asia	Production	6.6	7.3	-9.6
Rest of World	Sales	3.5	3.6	-2.8
Rest of world	Production	1.5	1.9	-21.1
Global	Sales	15.1	18.4	-17.9
Ciobai	Production	15.0	18.5	-18.9

Source: Global Insight

Interim Management Statement

- Environmental Technologies
 - Sales (ex pms) 6% below last year, 13% down on constant currency basis
 - Emission Control Technologies' sales well down. Global car production fell by 19% in third quarter compared with last year. Further action taken to reduce costs
 - OEMs taking extended shutdowns. Outlook for February / March difficult to forecast. Asian demand weaker. Global car production in fourth quarter could be 25% below last year
 - Process Technologies' sales up in third quarter. Energy security and environmental issues continue to support demand. DPT secured two further contracts with others in the pipeline

Interim Management Statement

- Precious Metal Products
 - External revenue and profits up. Good demand for fabricated products and gold refining. Volatility offset some of the impact of lower pgm prices
- Fine Chemicals & Catalysts
 - Also up. Good sales of research chemicals and active pharmaceutical ingredients
- Results for all three divisions helped by exchange translation

Outlook for Fourth Quarter of 2008/09

- Last year Precious Metal Products' fourth quarter was very strong as a result of record pgm prices. This year will be lower
- Environmental Technologies will also be lower with global car production projected to be 25% down
- On that basis our range for full year underlying eps (before amortisation of acquired intangibles) is now 85p to 90p (cf. 89.5p last year)

Opportunities in NOx Emission Control

Agenda

1	Argillon Acquisition Overview
2	Heavy Duty Diesel Emission Control
3	Future Opportunities in Stationary Emission Control (SEC)

Argillon Acquisition Overview

Larry Pentz Executive Director

Key Facts

On 10th December 2007 announced purchase of Argillon from a KKR subsidiary for €214m

Completed on 7th February 2008

Headquarters and principal site at Redwitz, Germany. Sales offices in the US and Asia

Products – catalyst technology for the control of oxides of nitrogen (NOx). Engineered ceramics

Business Portfolio

(Continuing Businesses)

		Catalysts	
	Power Plants	Stationary	HDD
	Selective Catal	ytic Reduction ("SCR") of Nitro	gen Oxide (NOx)
Products & applications	Catalysts for power plants, industrial applications and waste incineration plants: • Plate-type • Honeycomb-type	Engineering and supply of catalytic systems for: • Stationary diesel engines • Waste incineration • Marine vessels • Gas engines	Used in diesel trucks: • Heavy duty vehicles
Customer base	OEM (power generation)Engineering suppliers	Broad industrial customer base	HDD OEMs

Strategic Rationale

Power Plant HDD New emission control market • Adds sales in Europe Significant growth opportunity in **Broader product / technology** China portfolio **Tightening regulations in US and** • Combined extruded / coated • EU technology development Introduction of other JM **Product offering for BRIC** • technologies JM adds **Systems** Link with an experienced catalyst **business** Fit with JM's existing business

- SCA TRANSFORMED
- Critical mass and synergies
- Medium / long term new markets

• Expanded global presence

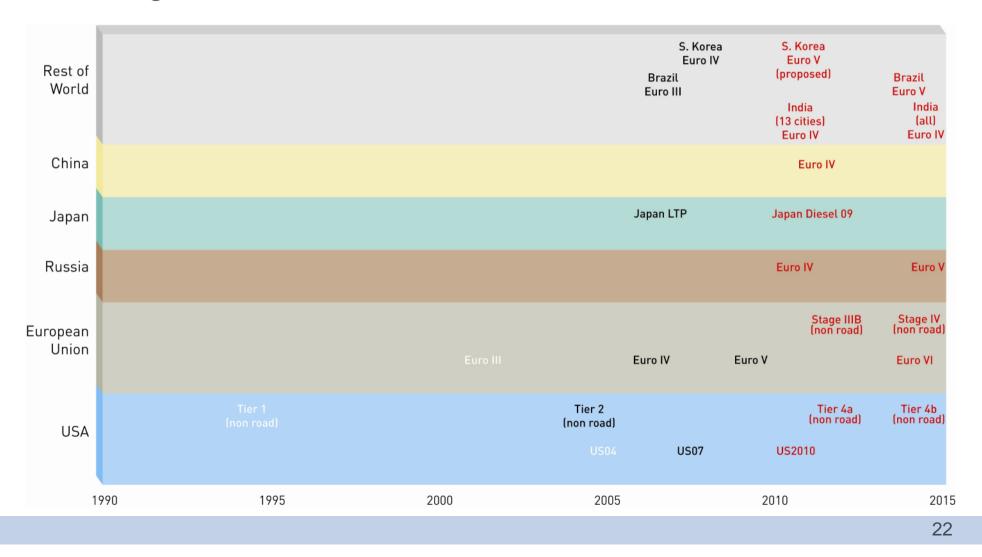
- Broader technology base
- Catalyst systems

Current Status

- Sales €59 million, operating profit €10 million in first half of 2008/09 for the continuing businesses
- Completed sale of Insulators and Alumina business to Lapp Inc. on 26th November 2008 for €21 million in cash plus €2 million vendor loan note
- Argillon fully integrated into ECT

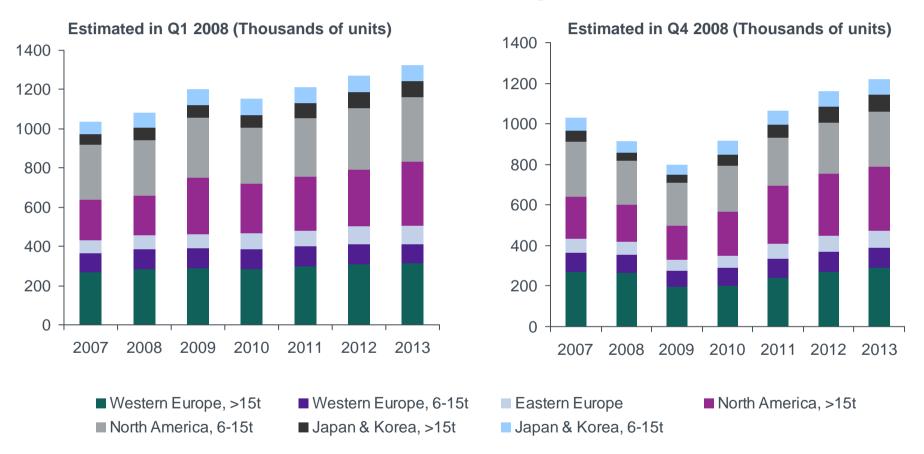
Heavy Duty Diesel Emission Control

David Prest Technology & Business Development Director



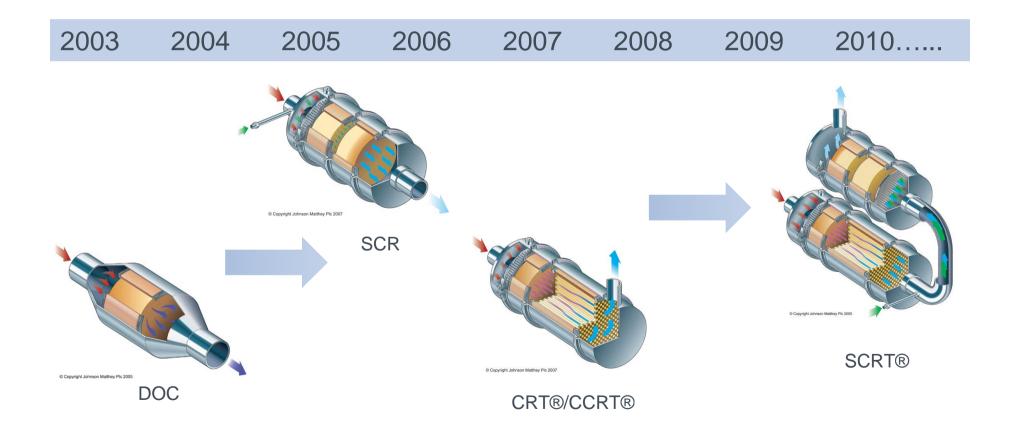
Agenda

1	Current Market Update
2	Developing Markets
3	Selective Catalytic Reduction (SCR)
4	Extruded and Coated SCR
5	Key Points

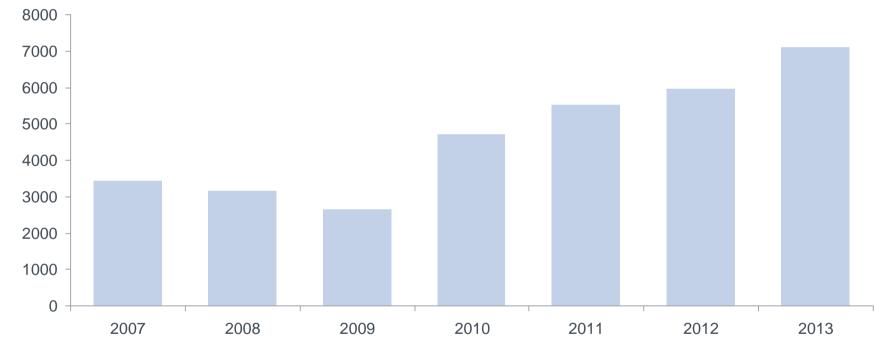


Emission Control Technologies HDD Legislation Timeline

Market Update


Current markets (HDD on road vehicles >6 tgvw)

Sources: JD Power & Johnson Matthey Scope: On road vehicles >6 tonnes gross vehicle weight (tgvw)

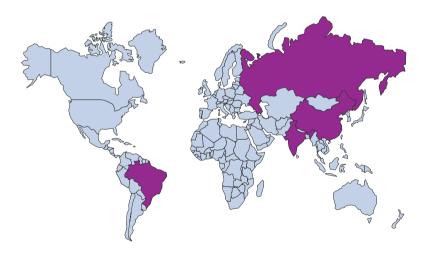


Evolution of Typical HDD Aftertreatment Systems

Number of Catalyst Bricks ('000s)

Source: Johnson Matthey estimates

Estimated catalysts fitted to HDD vehicles >6 tgvw in current markets:

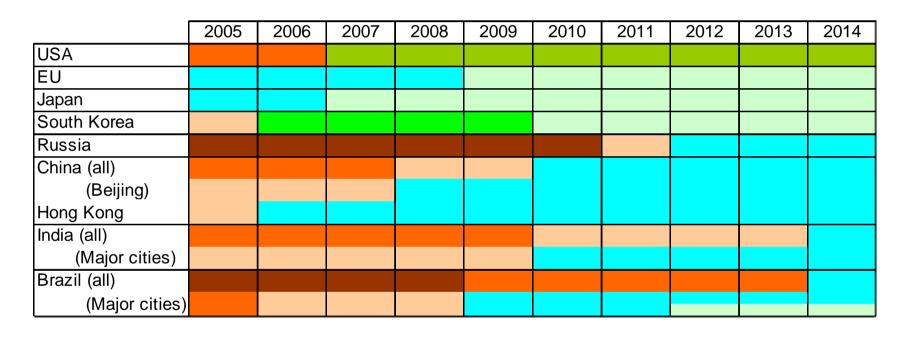

Western and Eastern Europe, North America, Japan and Korea

Includes Diesel Oxidation Catalyst (DOC), Selective Catalytic Reduction (SCR), Diesel Particulate Filter (DPF), Ammonia Slip Catalyst (ASC)

Developing Markets

New territories, on road market

Non-road market


HDD Legislation in New On Road Markets

Territory & Application	Legislation	Timing
Russia (on road)	Euro IV	2010
China (on road)	Euro IV	New models: 2010. All sales: 2011
India (on road)	Euro IV	Major cities: 2010. Whole country: 2014
Brazil (on road)	Euro V	2012

- New territories are generally adopting EU standards
- SCR is expected to be prime path
- Some opportunities for other technologies

Fuel Quality – Sulphur Content

Key Enabler for Catalytic Aftertreatment

■ >500 ppm S ■ <500 ppm S ■ <350 ppm S ■ <50 ppm S ■ <30 ppm S <15 ppm S</p>

OEMs in On Road Developing Markets

Typical Annual Sales ('000 units)

China	
 DongFeng 	180
• FAW	170
CNHTC	110
 Shaanxi 	75
 Beiqi Futian 	65

Brazil	
• MAN	45
Daimler	35
Ford	20
 Volvo 	10
 Iveco 	5

India	
• TELCO	150
 Ashok Leyland 	50
Eicher	20

Russia	
KamAZ	55
• GAZ	25
UralAZ	15

Developing Markets: Non-Road

Scrapers

Inland and Inshore Marine

Telehandlers

Backhoes

Excavators

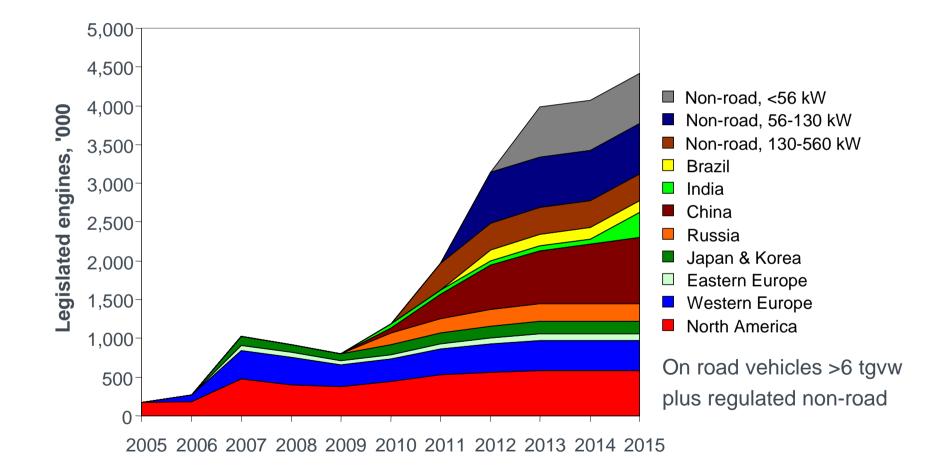
HDD Legislation in Non-Road Markets

Territory & Application	Legislation		Timing
	North America	Europe	
Non-road (130 – 560 kW)	Tier 4a	Stage IIIb	2011
	Tier 4b	Stage IV	2014
Non-road (56 – 130 kW)	Tier 4a	Stage IIIb	2012
	Tier 4b	Stage IV	2015
Non-road (37 – 56 kW)		Stage IIIb	2013
(19 – 56 kW)	Tier 4a		2013

- Legislation in Japan is similar
- Transitional arrangements omitted for clarity

Aftertreatment Systems for Non-Road

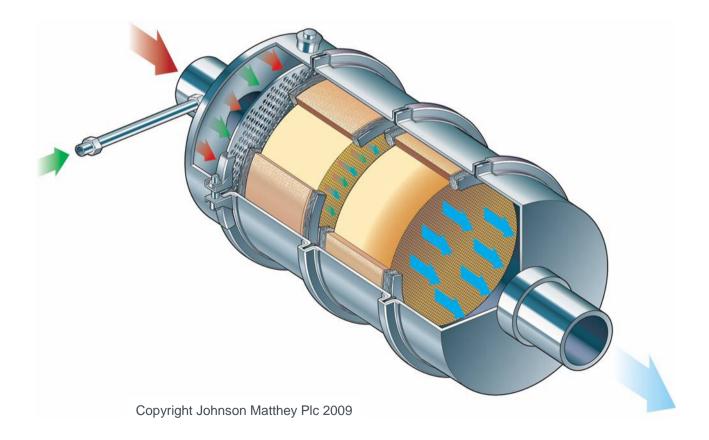
Very versatile duty cycles	 Non-road may use DOC only DOC plus coated filter SCR
	Depending on engine manufacturer, engine size and application


OEMs in Non-Road Regulated Markets

Typical annual production ('000)		Typical annual production ('000)	
Kubota	300	Komatsu	
Yanmar	200	Cummins	
Caterpillar / Perkins	200	Mitsubishi	
John Deere	160	JCB	
Case New Holland	150	SISU	
Deutz	150	Volvo (CE & Penta)	
Isuzu	90		

 Estimated total catalyst market value \$500m (sales excluding pgms) by end 2014

Impact of Developing Markets


Market Values

Estimated market value, 2014	\$ billion
Developed markets	1.6
Developing markets	0.4
Non-road	0.5
Total	2.5

Catalyst values: sales excluding precious metals

Selective Catalytic Reduction NO + NO₂ + 2NH₃ \longrightarrow 2N₂ + 3H₂O

Features of SCR Aftertreatment

- SCR has the potential for improved fuel economy (typically ca. 5%) compared with alternatives
- SCR more tolerant to high S fuel than filters
- SCR requires urea e.g. AdBlue®
- SCR is mature, proven technology

Coated Substrate

Extruded

Johnson Matthey

Complementary Features and Benefits of Extruded and Coated SCR...

Both perform the same NOx reduction

Extruded

- Improved low temperature activity
- Higher ammonia storage
- Superior resistance to coking
- Able to meet emissions targets with smaller catalyst volume
- Opportunities from technology combination

Coated

- Higher maximum operating temperature
- Can be used with metallic substrates
- Broad range of sizes, shapes and cell densities
- Opportunities from technology combination

... offer better options to the OEM

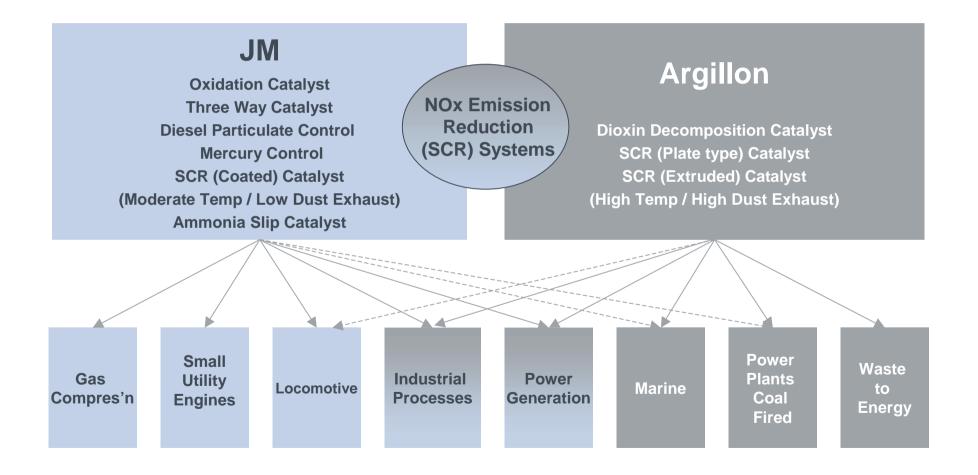
Key Points

The current on road market will grow with the introduction of new technologies, starting 2010

There are significant new market sector opportunities in new on road territories and non-road, starting 2010

SCR is a key technology for HDD NOx control, both on road and non-road

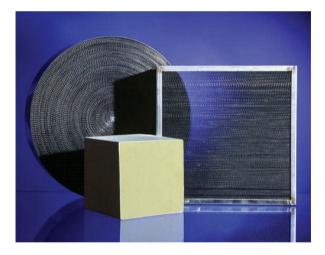
Extruded and coated SCR offer complementary benefits to OEMs



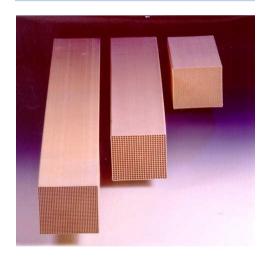
Future Opportunities in Stationary Emission Control (SEC)

Larry Pentz Executive Director

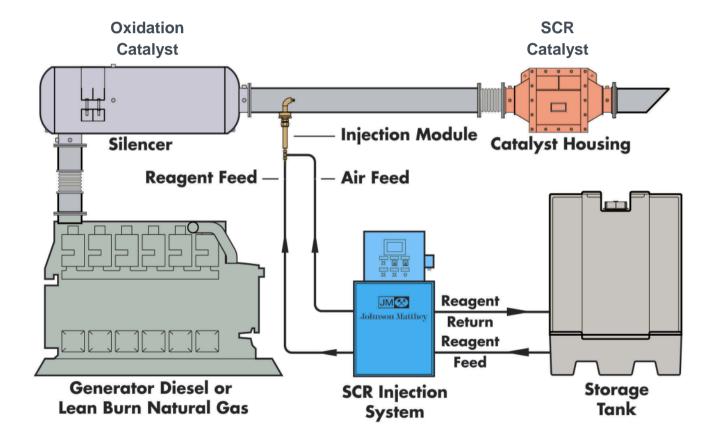
Technologies and Markets



Products


Plate SCR Catalyst

Coated Catalyst



Extruded SCR Catalyst

Products – Engine Emissions Control System

Installations

Markets

Current Markets

Power Generation

Future Markets

Marine

Industrial Processes

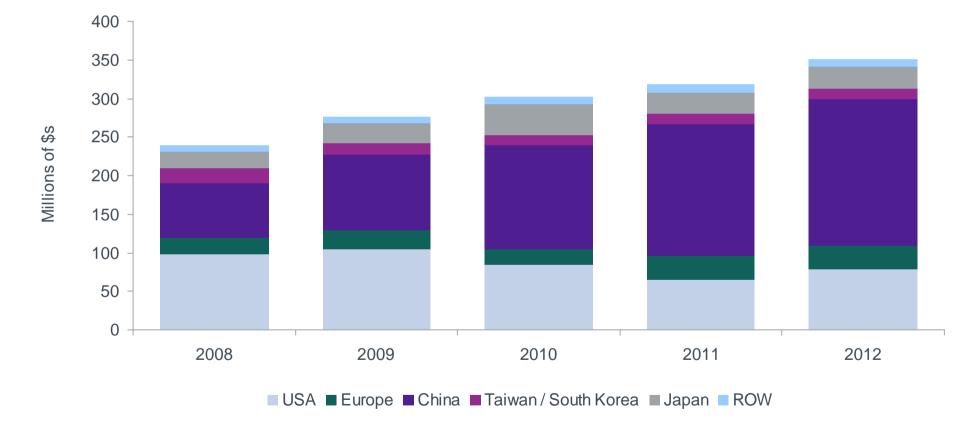
Locomotives

Coal Power Plants

Small Utility Engines

Power Generation SCR Systems Market

- Market Drivers:
 - Engines (all fuels) increased requirement for NOx control
 - Diesel Generators increased requirement for PM and NOx controls
 - Gas Turbines demand to rise until new coal plants are installed
- Current market size ~\$200 million, JM share 9%
- Gas Turbine competitors Cormetech and Haldor Topsoe
- Engine competitors HUG / Miratech, Steuler and H&H

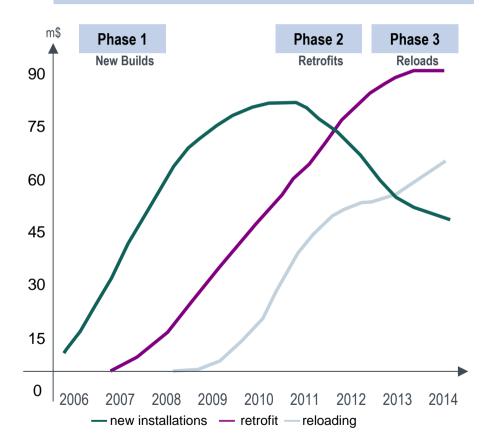


Industrial Process Emissions Control Market

- Industrial Process Applications:
 - Waste to Energy
 - Cement kilns
 - Nitric acid manufacture
 - Steam methane reforming plants
 - Glass manufacture
- Current market size ~\$30 million with potential to grow to around ~\$80 million by 2012, JM share 15%
- Competitors Cormetech, Haldor Topsoe, HUG and Steuler

Coal Power Plant SCR Catalyst Market

Source: Boston Consulting Group


China Coal Power Plant SCR Catalyst Market

- Market Drivers:
 - China is the world's largest producer and consumer of coal
 - Coal power plants produce 75% of China's power
 - The installed coal power plant capacity is ~535 GW
 - ~100 GW of new power to be installed by 2015
 - ~100 GW of replacement power to be installed by 2015
- Environmental Drivers:
 - SEPA (State Environmental Protection Administration) regulations require power plants to adopt SCR
 - Official regulations to be effective by 2011
- Competitors Cormetech, Haldor Topsoe, Frauenthal and Babcock Hitachi

China Coal Power Plant SCR Catalyst Market

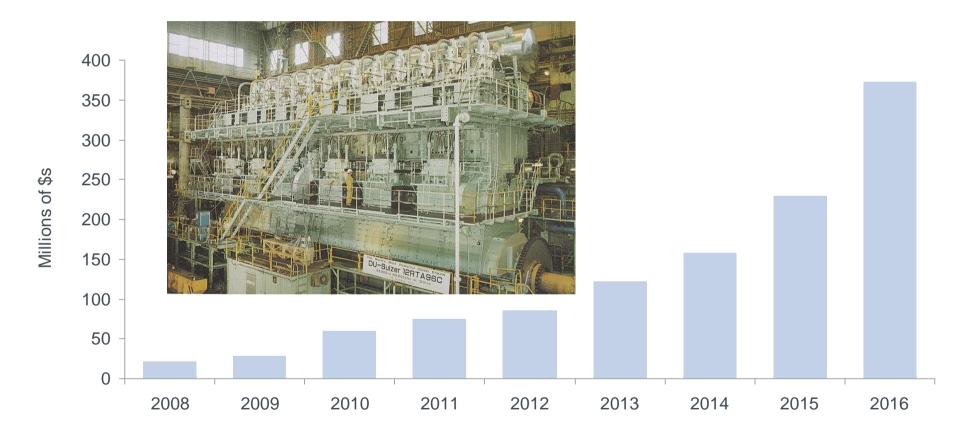
Comments

- New power station, catalyst contracts by boiler manufacturers and EPC companies
- Retrofits of existing power stations, catalyst contracts mainly by EPC companies
- Reload of existing SCR plants, catalyst contracts by utility companies or original EPCs
- After 2020 business is mainly driven by reloads and replacement catalysts

Market Development by Phases

China Coal Power Plant SCR Catalyst Market

- Supply Drivers:
 - Installed global capacity for catalyst production can not meet growing Chinese demand
 - Chinese utility companies are interested in locally supplied catalysts
 - Plate type catalysts are especially suitable for China's high ash content coal
 - JM is the only supplier of both plate and honeycomb type catalysts
- Current global market size ~\$230 million, JM share 19%, growing to \$350 million by 2012



Marine SCR Systems Market

- Current Market Drivers:
 - Norway NOx Tax and Sweden Fairway Dues
 - Commercial cargo customers demanding "Green" ships
- Future Market Drivers:
 - IMO (International Maritime Organization) designated ECAs (emission control areas) to be established in 2009:
 - US / Canada, Japan, Singapore, Australia, New Zealand, Baltic and North Sea
 - Tier 3 new engines to require SCR systems in 2015
- JM has 150 SCR systems installed on ocean going vessels
- Competitors HUG, H&H, Haldor Topsoe and Ceram

Marine SCR Systems Market

Locomotive SCR and PM Systems Market

- Market Driver US EPA New Source Performance Standards:
 - NOx and PM controls
 - New Tier 4 (MY 2015) locomotive engines
- Estimated US Market Size (2015):
 - Line Haul engines \$240m/year
 - Switcher engines \$34m/year
- Major Locomotive Engine Companies GE, EMD, Cummins, Caterpillar, MAN
- Competitors BASF, Tenneco and HUG
- Global market is anticipated to follow EPA approach

Small Utility Engine Catalyst Market

- Market Driver:
 - CARB Tier 3 (2008) and US EPA Phase 3 (2011 MY) non-handheld lawn and garden equipment, portable electrical generators and gasoline marine inboard and outboard water craft
- Estimated US Market Size:
 - \$100m/year in 2011
- Competitors BASF, Heraeus and MemPro

Catalyst Manufacturing at Redwitz

Conclusions

NOx control is an established and growing global market

Beyond on road and non-road HDD, new market opportunities exist in SEC: China coal fired power plant | Locomotives | Marine | Small utility engines

Currently the total SEC market is worth around \$500 million (sales excluding pms). By the end of 2016 we expect this market to have grown to around \$1.2 billion

JM is well positioned, as only supplier of coated, extruded and plate type SCR catalyst technology, to succeed in these emerging NOx control markets

FuelCellToday

Fuel Cell Today

www.fuelcelltoday.com

Jeremy Coombes

Fuel Cell Today – an Independent Resource

FCT Consulting

Website

- Three main types of analysis undertaken:
- 1. Can we use a fuel cell to power product 'X'?
- 2. We want to use fuel cells but what are our risks?
- 3. What are the future markets going to look like?

www.fuelcelltoday.com :

- 15+ free reports analysis on developments in the industry over the past year
- 2. Reports on potential future developments in the industry (application and region)
- 3. News, directory etc. etc.

Fuel Cell Today Annual Review

Fuel Cells are ALWAYS ten years away "The Hype About Hydrogen" fielesares filinheab There is not enough Pt in the world for a fuel cell industry With hybrid technology fuel cells are not needed 60

FuelCellToday[®]

The Reality (2009)

- •2008 shipments of fuel cells increased to 18,000 with a growth rate of 50% from 2007
- •A conservative estimate of current manufacturing capacity is 180 MW (up from around 100 MW in 2007)
- •In 2008 a number of new products became commercially available
- •Globally, new policy and legislation increased the market pull for the technology
- •The issue of codes and standards is being increasingly addressed

Fuel Cell Types and Characteristics

	Operating	Power	Catalyst	Target
	temp. ⁰C	(typical)		applications
AFC	60 - 90	up to 20 kW	PGM	niche transport, small stationary
PEMFC	80	up to 250 kW	PGM	transport, residential, UPS
DMFC	60 - 130	<1 kW	PGM	portable, APU, personal electronics
PAFC	200	>250 kW	PGM	power stations, CHP
MCFC	650	>300 kW	base metal	power stations, CHP
SOFC	1000	>200 kW	base metal	power stations, APU, portable

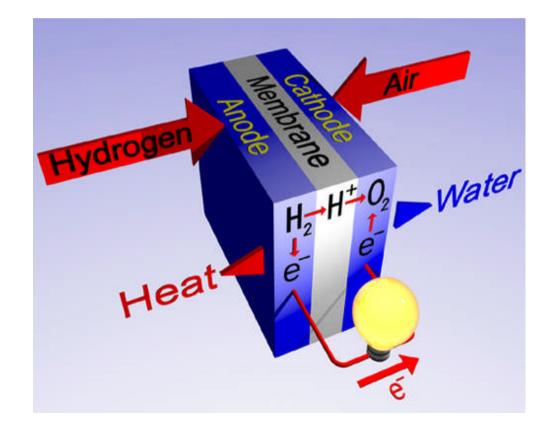
Fuel Cell Today is:

Dr Kerry-Ann Adamson, Principal Analyst, kerry-annadamson@fuelcelltoday.com Lisa Callaghan Jerram, Senior Analyst (North America), lisacallaghanjerram@fuelcelltoday.com Dr Jonathan Butler, Analyst (Asia), jonathanbutler@fuelcelltoday.com Dr Ben Todd, Consultant, bentodd@fuelcelltoday.com Dr Mike Hugh, Consultant, mikehugh@fuelcelltoday.com

Tel: +44 (0)1763 256326

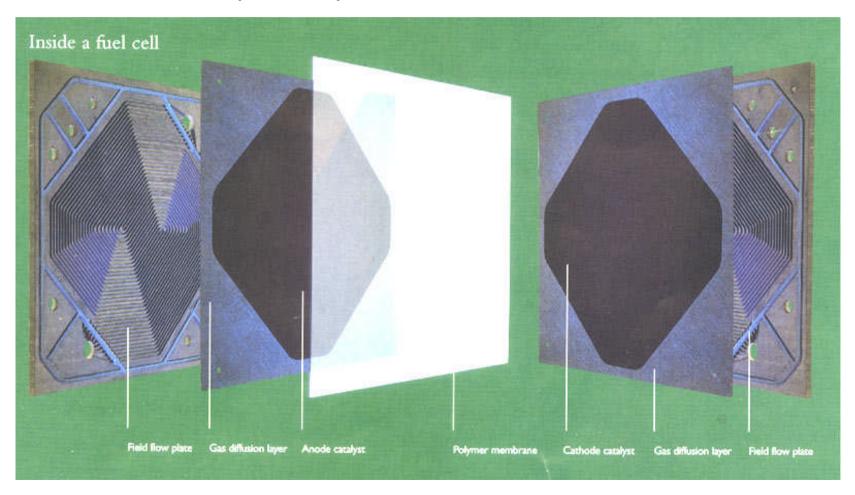
Johnson Matthey Fuel Cells - Update

Jack Frost Director, Johnson Matthey Fuel Cells



Outline

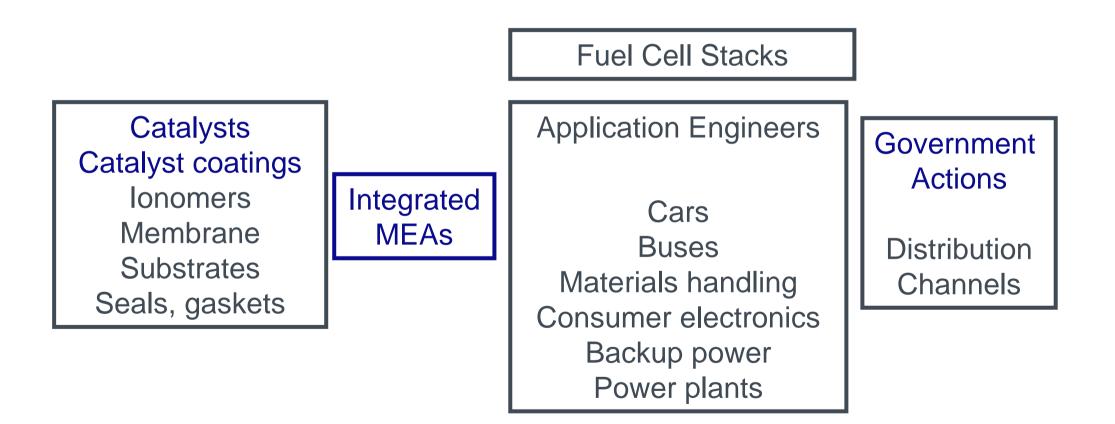
1	Johnson Matthey Fuel Cells' product positioning
2	The markets JMFC operates in
3	The progress the business is making



The Fuel Cell and Membrane Electrode Assembly (MEA)

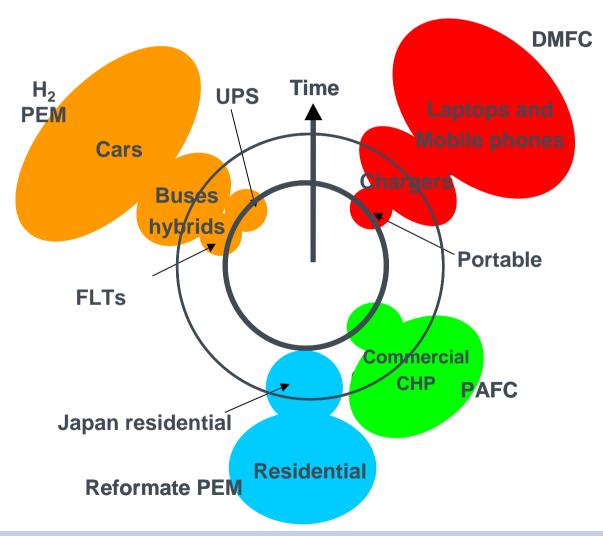
Johnson Matthey

The Components of a Polymer Electrolyte Membrane (PEM) Fuel Cell



Johnson Matthey Fuel Cells' Products

Product Positioning



Johnson Matthey Fuel Cells' Markets

Current applications are commercial now, replacing inadequate conventional technology

They are on technology pathway to longer term, higher volume applications

Markets – Direct Methanol (DMFC)

• Readily available fuel, especially at small scale enabling commercial portable devices now

• Leisure

- Recreational vehicles, leisure craft, remote cabins
- Dissatisfaction with batteries and intermittent solar and wind alternatives
- Noise and pollution of IC generators
- Military
 - Infantry men, unmanned craft
 - Batteries are heavy and have low energy density
 - US infantryman carries >20 kg batteries
 - Reduce weight to be carried, long run times, fast "recharging", well suited to long stand-by times

Markets - Direct Methanol (DMFC)

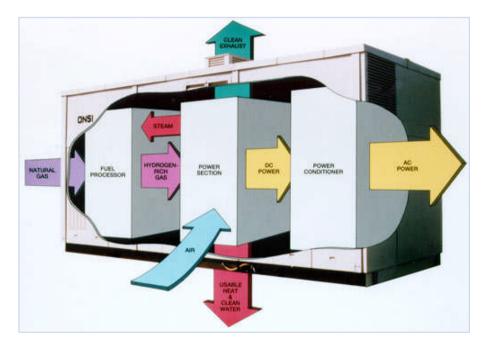
- Stand alone chargers offering mains autonomy. These are near to commercial launch
- Possible future products have significant potential
- Integrated 'media bay' units hybrid operation to continuously recharge existing battery at low power
- Battery replacement fuel cell to provide majority of energy with small battery for peak loads
- Laptops, portable electronics, cellphones



73

Markets – Hydrocarbon Fuels

- Combined heat and power (CHP) is the most cost effective way to reduce carbon emissions from power generation quickly
- Conventional CHP difficult / unattractive to deploy at local scale
- Fuel cells enable deployment of CHP at small scales e.g. residential and commercial buildings
- Phosphoric Acid Fuel Cells (PAFC) technology ready
- Commercial buildings particularly attractive



Johnson Matthey

PAFC for Commercial CHP

- Over 7 million operating hours
- New lower cost unit released 2009
- 400 kWe, 500 kW heat / cooling
- Freedom Tower, NY
- Quiet, clean, efficient
- Suitable for distributed power
- CHP; substantial CO₂ savings
- 5,000 units would save as much CO₂ as the proposed Severn Barrage or four nuclear power stations

Johnson Matthey

Markets – Hydrogen

- Today's markets are for the replacement of costly and inadequate conventional alternatives
- Backup power for grid failure
 - Telecoms masts, data and security systems
 - Low maintenance, low noise, low emissions
 - Replaces battery packs and diesel generators
- Materials handling
 - Battery performance and cost
 - Fuel cell or fuel cell hybrid configuration
 - Economically viable on whole life basis

Hydrogen PEM for Buses and Cars

- Buses: continue to attract interest
 - Hybrid configuration demonstration fleets around the world
 - Wider deployment from 2015
- Cars: largest potential market
 - 10,000 cars p.a. = 2 5 million MEAs
 - 60 million cars = 5 10 billion MEAs
- Climate change and urban pollution
- Consumer preferences
- Competition between OEMs
- Uncertainty over fuel supply options and new technology cost and capability
- Confusion around power train evolution and timescale

Vehicle Power Train Evolution

- Efficient petrol and diesel engines
- Mild hybrids regenerative braking for auxiliary power
- Parallel hybrids mechanical drive, battery support
- Series hybrids electric drive with on board generator, plug-in hybrid
- All electric vehicle batteries only
- Key factors supporting all electric vehicles:
- Security of fuel supply
 - Electricity can be made from any fuel
- Carbon content of fuel and especially electricity
 - Use of renewables provides low carbon electricity
- Energy storage technology and especially battery technology
 - Breakthroughs in battery technology anticipated

Electricity as the Future Fuel - Issues

- Current grid electricity generation is carbon intensive
- Decarbonising grid electricity requires investment in renewables, carbon capture and storage and nuclear
- GM's Chevrolet Volt battery provides 5.5 kWhr of usable energy. Sufficient for 40 miles. It weighs around 180 kg and takes 3 8 hours to recharge
- While 60 80% of car journeys are less than 20 miles return these only account for 20 30% of total car mileage (DfT)
- The chemistry and physics of batteries makes it difficult to envisage a step change in energy density

Hydrogen as a Future Fuel

- Like electricity, hydrogen can be generated from many sources and is zero emission at the point of use
- Low carbon hydrogen available in the near term from waste to hydrogen
- Decarbonising electricity generation means producing huge quantities of low carbon hydrogen as an intermediate from the carbon capture and storage process
- A tank of compressed hydrogen in the Honda Clarity stores around 4 kg of hydrogen, sufficient for 280 miles and takes a couple of minutes to refill

Summary

- Today's commercial markets are in portable power, backup power and commercial CHP
- These markets on their own will enable Johnson Matthey's Fuel Cells business to achieve profitability in the next few years
- Fuel cells for consumer electronics is a huge potential market
 - Further progress in demonstrating consumer acceptability is needed
- Cars remain the biggest market opportunity
 - Fuel cell power trains will be produced in small but meaningful numbers post 2012 2015
- Johnson Matthey Fuel Cells is well positioned for these larger markets. Even small market penetration by fuel cells into these markets presents a major opportunity for Johnson Matthey

Coal to Products and Low Carbon Technology

Barry Murrer Director, Johnson Matthey Technology Centre Sue Ellis Manager, Low Carbon Research Group

Topics	
Coal	Barry Murrer, Director, JMTC
Greenhouse Gas Mitigation Hydrogen Generation and Storage	Sue Ellis, Manager, Low Carbon Research Group

Energy Demand and Supply

- Oil supply nearing the peak
- Oil is more difficult and costly to extract
- 'Dirtier' oil requires more refining
- Gas and coal forecast to grow

18 000 16 000 14 000 12 000 10 000 Mtoe 8 0 0 0 6 0 0 0 4 0 0 0 2 0 0 0 ۵ 1970 1980 1990 2000 2010 2020 2030 Hydro and Other Renewables – Nuclear Biomass Gas Coal Oil

World Primary Energy Demand by Fuel

Source: IEA 2006

Increasing Use of Gas and Coal

• Gas (Syngas) to Products

Traditional Applications

- Methanol
 Wood preservative, vinyl paint, resins, adhesives, MTBE
 - Desulphurising fuels, chemical processes, fuel
 - Ammonia Fertiliser, pharmaceuticals, chemical intermediates

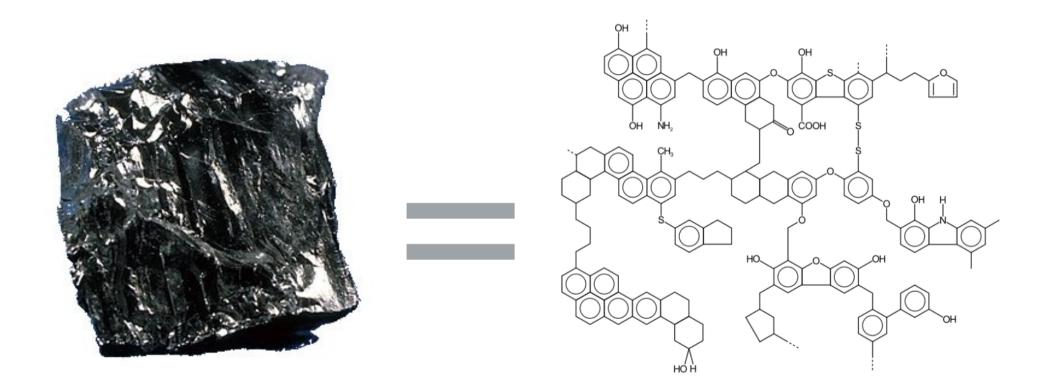
New Energy Sources

Hydrogen

- Gas to Products -
- Clean Coal
- Low Carbon

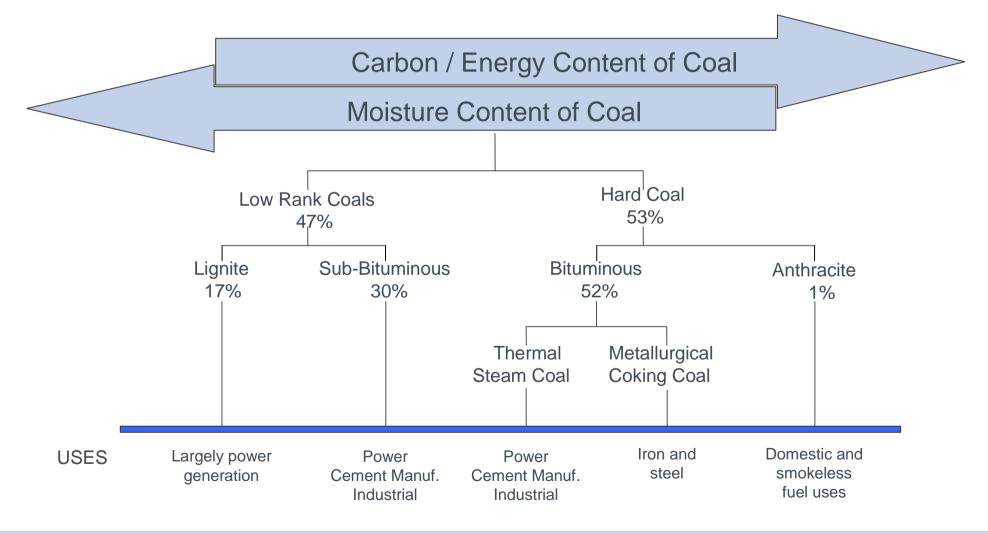
- Methanol (direct, biodiesel, DME, MTO) Fischer-Tropsch diesel
- CO₂ sequestration
- Syngas from biomass
- Carbon sequestration and flare elimination

Presented during Billingham / Stockton visit Jan 2008

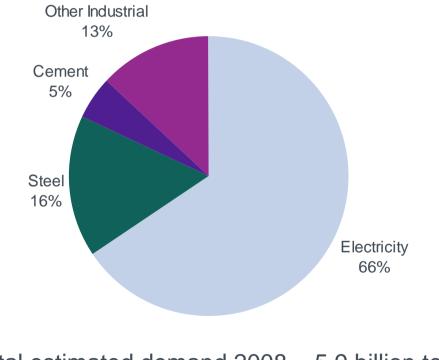


Coal

- Use of coal will increase for chemicals, fuels and power generation
- Coal is dirty and these applications all generate more CO₂ than comparative oil / gas based technology
- We need to use coal cleanly and eventually capture and sequester CO₂



Coal


http://en.wikipedia.org/wiki/File:Struktura_chemiczna_w%C4%99gla_kamiennego.svg

Coal is a Variable Feedstock.....

Coal – What is it used for?

Total estimated demand 2008 = 5.9 billion tonnes

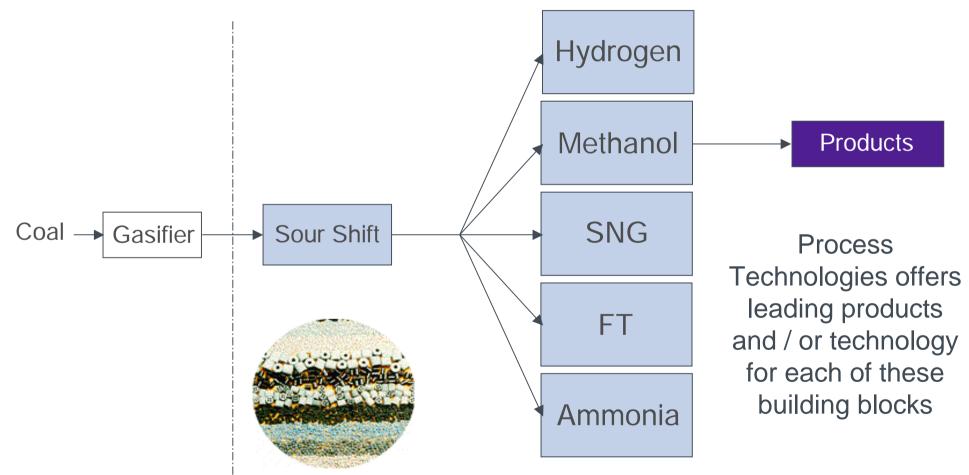
Data source: Energy Information Administration

www.eia.doe.gov

A Tonne of Coal Contains...

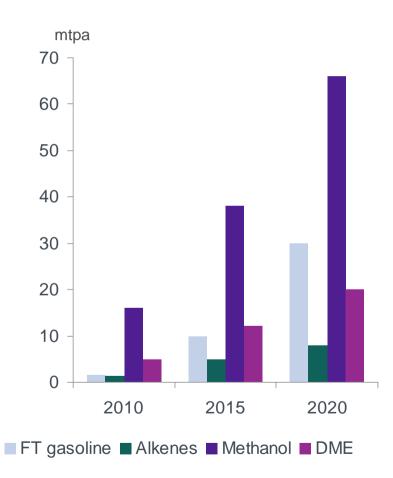
Coal Types	Average Energy Content		Carbon Content	CO ₂ / tonne coal	Moisture	Ash
	MJ/tonne	kWhr	wt. %	tonnes	wt. %	wt. %
Anthracite	33,000	9,170	86 – 97	3.2 - 3.6	<3	
Bituminous	27,900	7,750	45 - 86	1.7 – 3.2	3 – 13	7 – 14
Sub-bituminous	20,000	5,550	35 – 45	1.3 – 1.7	28 – 30	5 – 6
Lignite	15,000	4,170	25 – 35	0.9 – 1.3	30 - 34	7 – 16
Average Chinese Coal	19,000-25,000	5,280-6,950	48 – 61	1.8 – 2.2	3 – 23	28 – 33
Average Indian Coal	13,000-21,000	3,610-5,830	30 - 50	1.1 – 1.8	4 - 15	30 - 50

...and some unpleasant trace elements


Potentially Harmful Components in Coal

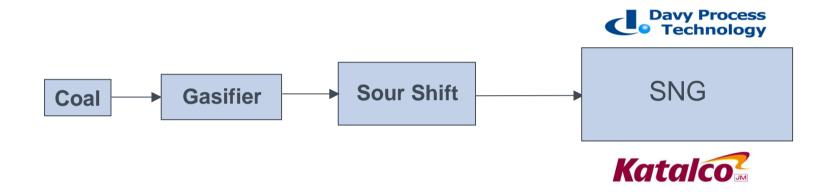
Element	Global Average Range	Element Global Average Range	
	(g/tonne)		(g/tonne)
Mercury	0.02 - 0.19	Sulphur	2,000 - 40,000
Arsenic	0.3 – 13	Cadmium	0.01 – 0.31
Selenium	0.1 – 5	Antimony	0.02 - 1.4
Chlorine	100 – 1,500	Fluorine	<20-340
Lead	<1 - 22		

Johnson Matthey

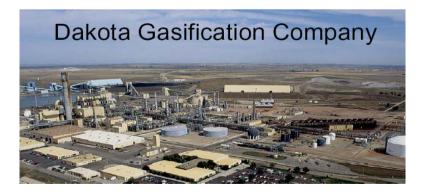

Process Technologies

Coal to Chemicals

Planned Coal to Chemicals in China



- Current world methanol capacity is 35 mtpa
- JM is a strong catalyst supplier and licensor in this area
- Manufacturing sour shift at JM joint venture in Qingdao


Source: Exposure draft of mid and long term development plans of Coal Chemical Industry, Chinese National Development and Reform Commission 2006 http://www.ndrc.gov.cn/

Coal to Chemicals – Substitute Natural Gas

- JM offers methanation process technology through DPT to produce SNG
- Based on our high activity CRG catalyst
- At Dakota Gasification Company, CO₂ separated and used for enhanced oil recovery (EOR)
- Projects being developed in USA, China, elsewhere

Coal to Chemicals

Coal is a valuable feedstock

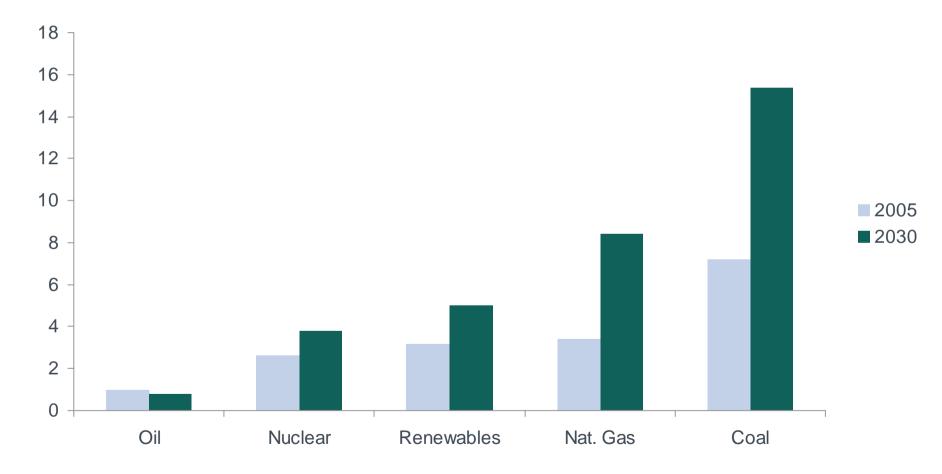
Conversion of coal to chemicals is important now and will increase

Compared to power generation CO₂ emissions from coal to chemicals are negligible

New JM opportunities will arise

Coal to Fuels

- If adopted widely would generate huge amounts of CO₂ and require major expansion of coal production
 - Synthetic fuels from coal have a carbon intensity 2.5 3.5 times that produced from burning conventional HCs
 - US consumption of liquid fuels is 13 million bpd
 - 10% replacement by coal would require 250 million tonnes coal / yr => 25% increase in US production and corresponding increase in CO₂
- But capturing CO₂ from a fuel plant could be much cheaper than from a power plant
 - 10% incremental cost to put carbon capture on CTL plant

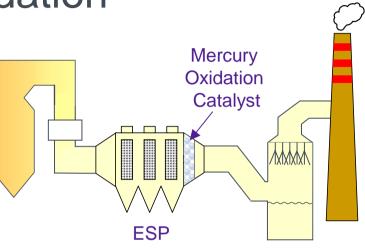


Coal to Electricity

- The largest application of coal
- Will continue to grow

Electricity Generation by Energy Source

Source: www.eia.doe.gov Energy information administration international energy outlook 2008


Cleaner Electricity from Coal

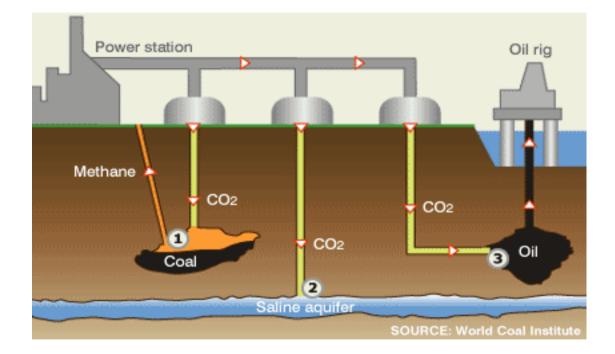
- NOx abatement from power plants
 - JM SEC (Argillon)
- Mercury removal from flue gas
- Mercury and other metals in IGCC
- Direct carbon fuel cells

SEC Catalyst for Mercury Oxidation

- Metallic mercury oxidised by gold catalyst
- Oxidised mercury can be scrubbed and removed from flue

- Lower Colorado River Authority, Texas
- 200 MW coal fired power station, two year trial
- 1174 ft³ (8712 blocks) of Au-Al₂O₃
- 36 modules. Hg monitored across catalyst bi-monthly, sonic horns maintain low pressure drop

Wet FGD System (SO₂ / Hg Removal)


Other JM Hg Related R&D

JM / Anglo / NETL :	Pd based sorbents for removal of Hg, As, Se etc. from syngas at elevated temperatures Trials at two US sites Won US DOE R&D 100 Award in 2008
MERCURYCAP :	EU funded programme – improved Hg oxidation over SCR catalysts Argillon / JM SEC supplying catalysts
PURASPEC :	Niche products for Hg removal from gas and liquid streams

Carbon Capture and Storage

- Necessary for Future Expansion of Coal Use?

'Permanent' storage of captured CO₂ in geological formations

Currently used in EOR with economic benefit

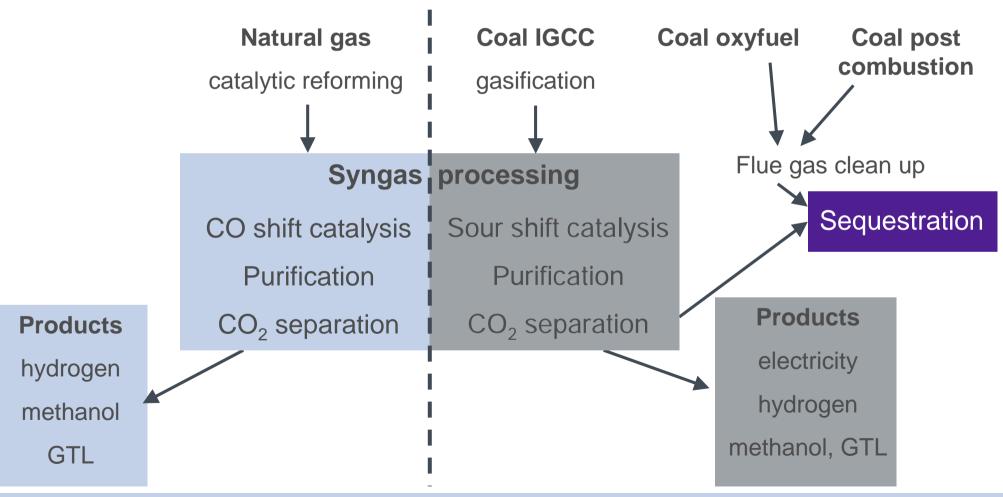
Carbon Capture and Storage

"The only hope for mankind..." or "False hope"?

Prof. David King

Greenpeace

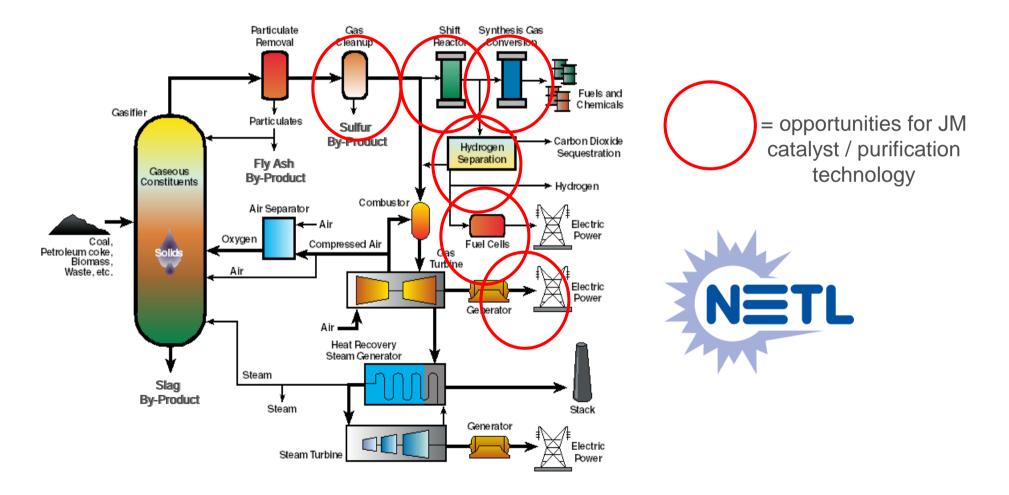
- Issues
 - Capture technologies too costly and remain to be proven at scale
 - Long term carbon policies are unclear and variable
 - Conventions are needed to cover CO₂ storage and stewardship
 - Public acceptance required

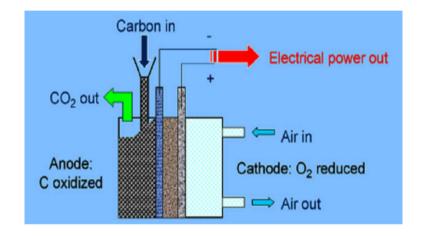


Demonstrated Technologies for CO₂ Capture from Coal Power Stations

- Post combustion chemical absorption of dilute CO₂ from flue gas
- Oxyfuel combustion in pure oxygen and direct compression of exhaust
- Pre combustion physical / chemical separation of high pressure CO₂ from syngas

Carbon Capture and Storage


Similarities and Opportunities


IGCC Integrated Gasification Combined Cycle

Gasification Based Energy Production System Concepts

Direct Carbon Fuel Cell

Electrochemical oxidation of solid carbon
 E° = 1.02 V, 750 - 850 °C
 C + O₂ → CO₂
 Diverse cell designs

- ✓ Theoretical efficiencies >80%
- ✓ Concentrated CO₂ exhaust suitable for capture
- ✓ Modular power generation concept at tens of MW scale
- x Significant coal processing requirement
- x Complex solids handling
- x Technology in its infancy [W W Jacques, US Pat 555511 (1896)]

Project Portfolio Summary

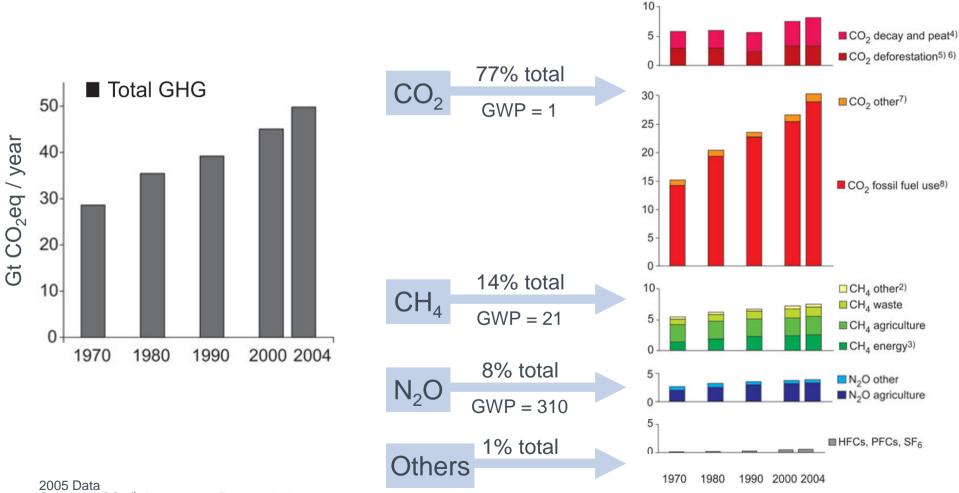
- There are short and medium term opportunities being worked on by Process Technologies. There is a rigorous project selection and management process in place within Process Technologies
- We have a JMTC / Process Technologies process to identify and prioritise longer term opportunities and have a shortlist
- Longer term opportunities still require JM skills in catalysis, purification and process engineering. We have dedicated research resources on these projects

Low Carbon Technologies – Future Opportunities

Sue Ellis Manager, Low Carbon Research Group

109

Low Carbon Research Group

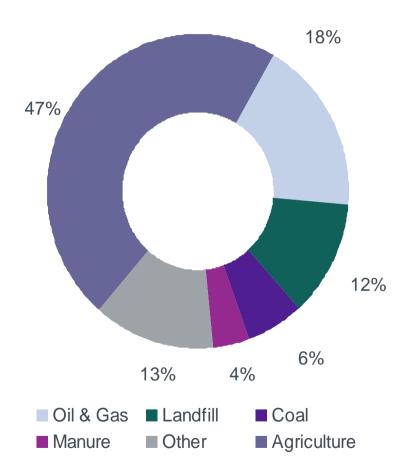

- Identify Johnson Matthey's Low Carbon Technology interests
- Understand emerging markets
- Develop early business opportunities
- Implement Low Carbon R&D projects
 - Renewable H₂ generation
 - Distributed H₂ generation
 - Hydrogen storage
 - GHG reduction technologies

Global Anthropogenic Greenhouse Gas Emissions

Source: IPCC 4th Assessment Report 2007

N₂O Abatement A Growing Opportunity

- N₂O is formed as a side reaction in nitric acid manufacture
 - 5% of anthropogenic N₂O emissions
 - Global emissions: $400,000 \text{ t/yr} = 125 \text{ million tonnes } CO_2 \text{ equivalent}$
- Catalytic technology developed by JM / Yara reduces >90% emissions
 - 70% market share with installation into 50 plants by mid 2009
 - Emission reductions of 16.3 million tonnes CO₂ equivalent
- Revenue is through catalyst effect, rather than catalyst sales
 - JM co-authored UN CDM Methodology AM0034
- Regulation will expand market further

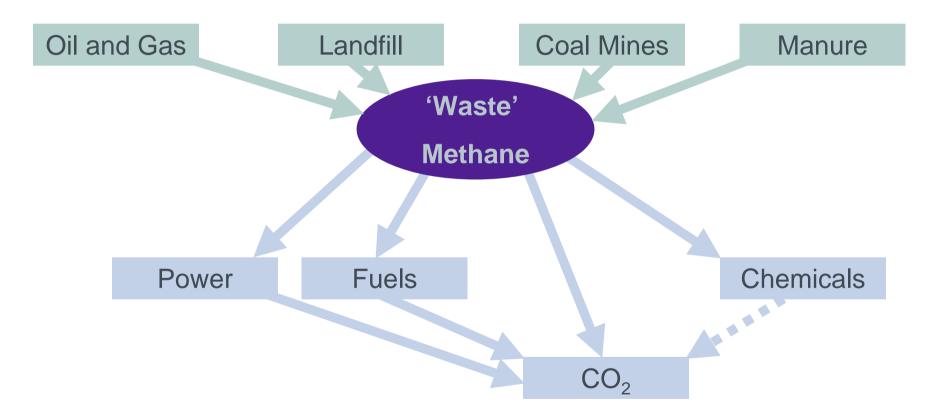


Anthropogenic Methane Emissions

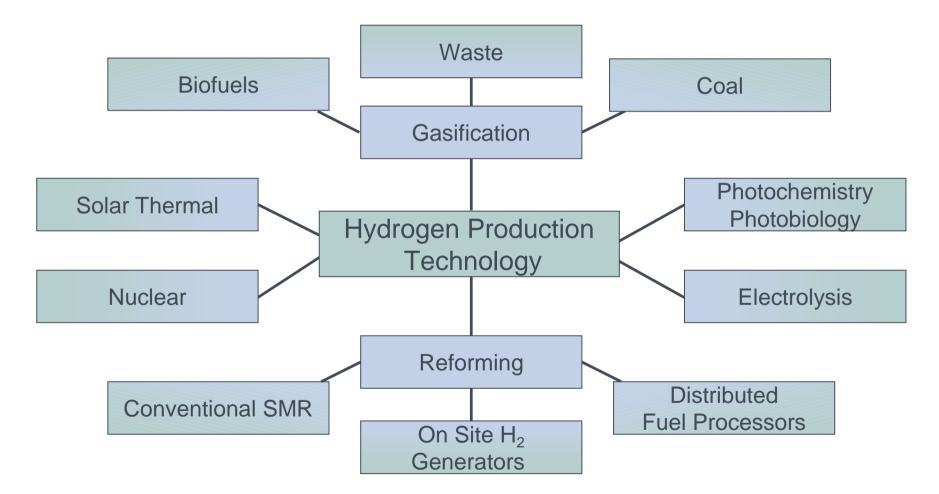
- Agriculture accounts for almost half
- Other significant sources
 - Oil & gas operations
 - Landfill gas
 - Coal mining
 - Manure

2005 Data Source: Global Anthropogenic Emissions of Non-CO₂ Greenhouse Gases 1990 - 2020 (EPA Report 430-R-06-003)

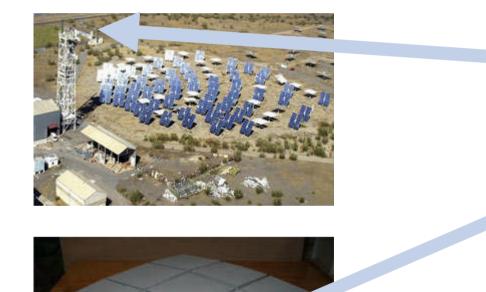
Mine Related Methane

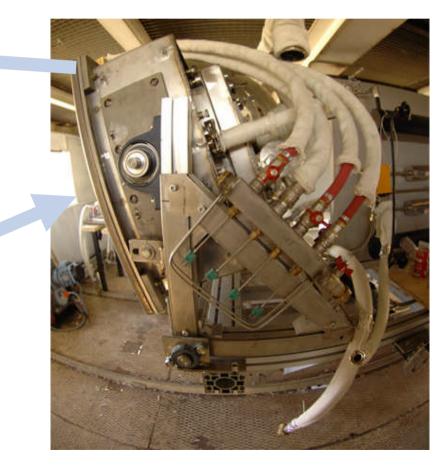

Coal Bed Methane	Coal Mine Methane	Ventilation Air Methane		
Gas drained from coal seam pre-mining / unmineable coal seam	Gas drained from worked areas of mine	Extracted from mine to allow safe working		
60 - 94% CH ₄	30 - 95% CH ₄	0.1 - 0.8% CH ₄ in air		
Few m ³ /sec	Few m ³ /sec	100s m ³ /sec		
Easiest to capture / use Highest GHG impact				

• Markets developing through regulatory and carbon trading mechanisms


Methane Abatement

New JM Opportunities


• Issues with variable methane concentrations, gas flow and contaminants

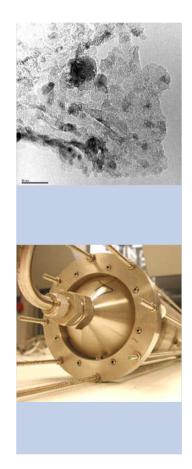

Hydrogen Generation Pathways

Hydrosol Splitting Water with Sunlight

Johnson Matthey

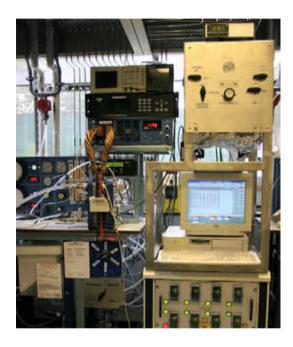
Hydrogen Storage A Problem Waiting for a Solution

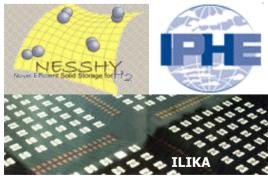

- Fuel cell vehicles are being designed with >300 mile range using high pressure tanks to store the hydrogen
- A low pressure alternative could offer benefits of
 - Space
 - Cost
 - Performance
- The international R&D effort continues...



JM and Hydrogen Storage

- H₂ storage cited as a barrier to fuel cell commercialisation
 - Strategic driver from fuel cell business
- Current JM materials have technical benefits but not suitable for automotive systems
 - Historical IP position on Mg and La Ni₅ (AB₅) materials
- Excellent technology fit with JM core competencies
 - Catalysis
 - Materials scale up
 - Heat and fluid management





JM Hydrogen Storage Activities

- Research and Development
 - Full range of metal and complex hydrides
 - Translating powder and thin film results into reality
 - Microscale \rightarrow gram scale \rightarrow kg scale
 - Testing and characterisation
- Networked with 25 Universities
 - EU FP7 project
 - Two Technology Strategy Board projects
- Evaluating other H₂ storage options
 - e.g. Organic carriers
 - e.g. Ammonia

Low Carbon Technologies - Summary

- Greenhouse gas regulation will open up opportunities for JM
 - New markets for existing products
 - New process and licensing opportunities
 - New technology offerings
- JM has a breadth of core technologies that can be used to tackle the emerging challenges
- N₂O abatement experience illustrates a different way of doing business
- Opportunities are many, but often speculative and evolving, and need careful assessment
-more on the tour

Tour of Johnson Matthey Technology Centre

Wrap Up and Q&A

Neil Carson Chief Executive

Glossary

Alkaline fuel cell	EC
Auxiliary power unit	EG
Arsenic	EO
Ammonia slip catalyst	EP
Brazil, Russia, India, China	ES
California Air Resources Board	FG
Coated continuously regenerating trap	۶L٦
Clean Development Mechanism	FT
Methane	GH
Combined heat and power	GT
Carbon monoxide	GW
Carbon dioxide	GW
Continuously regenerating trap	H_2
Coal to liquids	HC
Dimethyl ether	HD
Direct methanol fuel cell	HF
Diesel oxidation catalyst	Hg
Diesel particulate filter	IC
Davy Process Technology	IGC
Emission control area	IMC
	Auxiliary power unit Arsenic Ammonia slip catalyst Brazil, Russia, India, China California Air Resources Board Coated continuously regenerating trap Clean Development Mechanism Methane Combined heat and power Carbon monoxide Carbon dioxide Carbon dioxide Continuously regenerating trap Coal to liquids Dimethyl ether Direct methanol fuel cell Diesel oxidation catalyst Diesel particulate filter Davy Process Technology

ECT	Emission Control Technologies
EGR	Exhaust gas recirculation
EOR	Enhanced oil recovery
EPA	Environmental Protection Agency (USA)
ESP	Electrostatic precipitator
FGD	Flue gas desulphurisation
FLT	Fork-lift truck
FT	Fischer-Tropsch
GHG	Greenhouse gas
GTL	Gas to liquids
GW	GigaWatt
GWP	Global warming potential
H_2	Hydrogen
HC	Hydrocarbons
HDD	Heavy duty diesel
HFCs	Hydrofluorocarbons
Hg	Mercury
IC	Internal combustion
IGCC	Integrated gasification combined cycle
IMO	International Maritime Organization

Glossary

JMFC	Johnson Matthey Fuel Cells
JMTC	Johnson Matthey Technology Centre
LDD	Light duty diesel
LNT	Lean NOx Trap
MCFC	Molten carbonate fuel cell
MEA	Membrane electrode assembly
MTBE	Methyl tert-butyl ether
MTO	Methanol to olefins
MY	Model year
N_2	Nitrogen
N_2O	Nitrous oxide
NAC	NOx adsorber catalyst
NETL	National Energy Technology
	Laboratory (USA)
NO	Nitric oxide
NO_2	Nitrogen dioxide
NOx	Nitrogen oxides
O ₂	Oxygen
OE	Original equipment

Original equipment manufacturer
Phosphoric acid fuel cell
Polymer electrolyte membrane
Perfluorocarbons
Platinum group metal
Particulate matter
Sulphur
Selective catalytic reduction
Selective catalytic reduction + CRT®
Selenium
Stationary emission control
Sulphur hexafluoride
Steam methane reforming
Substitute natural gas
Sulphur dioxide
Solid oxide fuel cell
A mixture of hydrogen and carbon oxides
Tonnes gross vehicle weight
Uninterruptible power supply

JM & Johnson Matthey