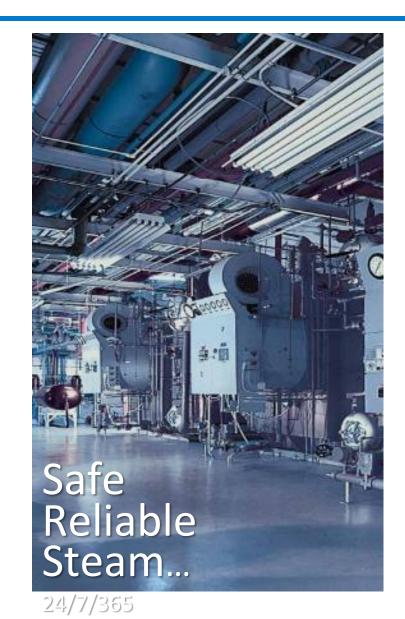

Steam Chemistry Best Practices in a Steam Methane Reformer

ELLIE PALOMO

Nalco Water, an Ecolab Company



Steam Methane Reformer (SMR) Steam System Overview

Fundamental Mission of a Boiler System

- ▲ To produce the required amount of steam
- To produce the required pressure steam
- ▲ To produce the required purity steam
- To produce steam safely and efficiently

Why Treat Boiler Water?

Boiler Water Treatment Objectives:

- Corrosion Control
- Deposition Control
- ▲ Steam Purity

Treatment Success Requires Balance

Balanced M-O-C Approach to Total System Protection

Mechanical

Consider all aspects inherent to steam system design

Operational

Understand how plant operational decisions impact performance

Chemical

Water chemistry and related interaction

Boiler Treatment Program Components

Pretreatment

Objective: Prepare makeup water for use in the boiler

- Choice of pretreatment depends on feedwater purity demands
- Common solutions include softening, reverse osmosis and demineralization

Preboiler

<u>Objective</u>: Combine makeup and condensate to required feedwater (FW) purity
Feed a non-sulfite oxygen scavenger and maintain target FW pH for corrosion control
Maintain ASME guidelines to minimize metals transport and deposition in PGB

Boiler Internal Treatment

Objective: Match the treatment approach with likely contaminants in the FW

Internal treatment chemistry and supplemental iron dispersant commonly used

• Boiler cycle control is critical in removing suspended solids from the boiler

Steam / Condensate Treatment

Objective: Provide protection for export steam condensate system metallurgy

Hydrogen plant condensate system is protected by stainless steel, export is not

Feed amine to export steam header when required

SMR Boiler Program -Key Considerations-

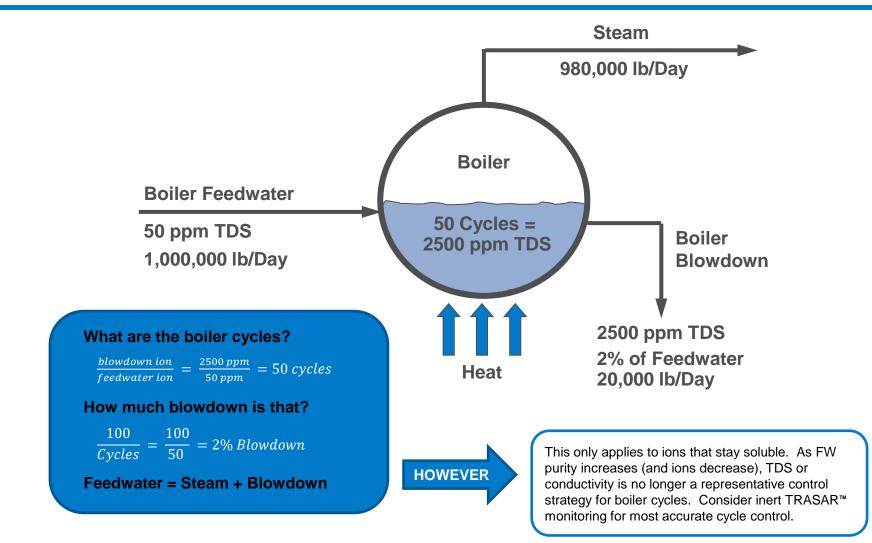
- 1. Process condensate challenges
- 2. Avoiding reformer fouling/deposition
- 3. Catalyst poisoning prevention
- 4. Minimize condenser corrosion risk
- 5. Proper boiler cycle control

ater

An Ecolab Company

SMR Process Condensate Considerations

- Process condensate is returned exclusively as boiler feedwater
- ✓ Can be laden with CO_2 at a pH of 4.3, (or pH >7)
- Can contain high levels of iron (up to 1.0 ppm)
- Boiler feedwater often exceeds recommended ASME guidelines
- Supplemental iron dispersant needed to prevent deposition
- Non-precipitating boiler treatment recommended
- No amine treatment required
 - Except for export steam applications



Contaminant Concentrations in Condensate

Species	Units, ppm as…	Hot Process Condensate	Cold Process Condensate	ASME Feedwater Guidelines
Total Iron	Fe	1.6	0.66	≤ 0.02
Copper	Cu	< 0.026	< 0.009	≤ 0.01
Inorganic Carbon	С	1.6	30	N/A
Organic Carbon	С	5.1	22	< 0.2
Methanol	CH ₃ OH	6.1	40	N/A
Formic Acid	СНООН	6.4	1.1	N/A
Ethanol	C ₂ H ₅ OH	1.4	4.0	N/A
Acetic Acid	CH ₃ COOH	3.3	1.7	N/A

Cycles of Concentration Study

Steam Separation Equipment

Best Practices

and the second second

Hydrogen Plant Boiler Program Selection Guide

Purpose	Considerations	Feed Point	Soft Water Makeup	Demineralized Water Makeup
Oxygen Scavenger	 No Sulfur Compounds Maximize boiler cycles 	Piping between DA stripping and storage section	Passivating Scavenger	Passivating Scavenger
Feedwater pH Control	 If required Minimize ammonia 	Boiler feedwater	Neutralizing amine	Neutralizing amine
Internal Treatment	 Minimize ammonia generation Iron dispersant capability TRASAR capability for cycle control and system diagnostics Maximize cleanliness 	Boiler feedwater	All-polymer treatment	All-polymer treatment
Supplemental Iron Dispersant	 If chelant or phosphate internal treatment programs are utilized 	Boiler feedwater	All-polymer treatment	Utilize polymer dispersant
Condensate Treatment	 To protect export steam Hydrogen plant condensate system is protected by stainless steel 	Export steam header	As required to protect plant systems	As required to protect plant systems

Hydrogen Plant Boiler Program Selection Guide

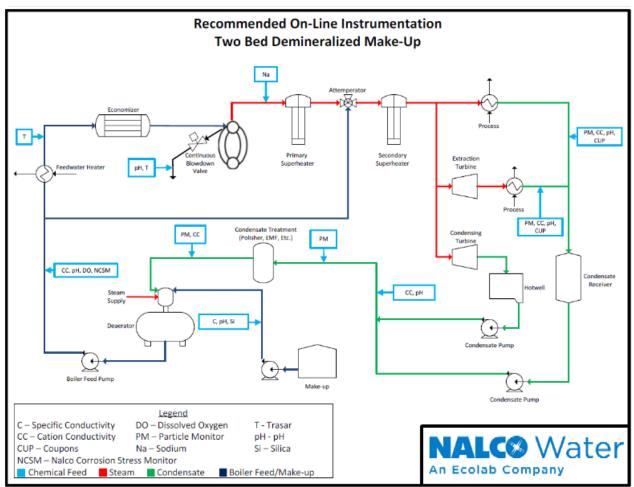
Purpose	Considerations	Feed Point	Soft Water Makeup	Demineralized Water Makeup
Oxygen Scavenger	 No Sulfur Compounds Maximize boiler cycles 	Piping between DA stripping and storage section	Passivating Scavenger	Passivating Scavenger
Feedwater pH Control	 If required Minimize ammonia 	Boiler feedwater	Neutralizing amine	Neutralizing amine
Internal Treatment	 Minimize ammonia generation Iron dispersant capability TRASAR capability for cycle control and system diagnostics Maximize cleanliness 	Boiler feedwater	All-polymer treatment	All-polymer treatment
Supplemental Iron Dispersant	1. If chelant or phosphate internal treatment programs are utilized	Boiler feedwater	All-polymer treatment	Utilize polymer dispersant
Condensate Treatment	 To protect export steam Hydrogen plant condensate system is protected by stainless steel 	Export steam header	As required to protect plant systems	As required to protect plant systems

What about feeding caustic for pH control?

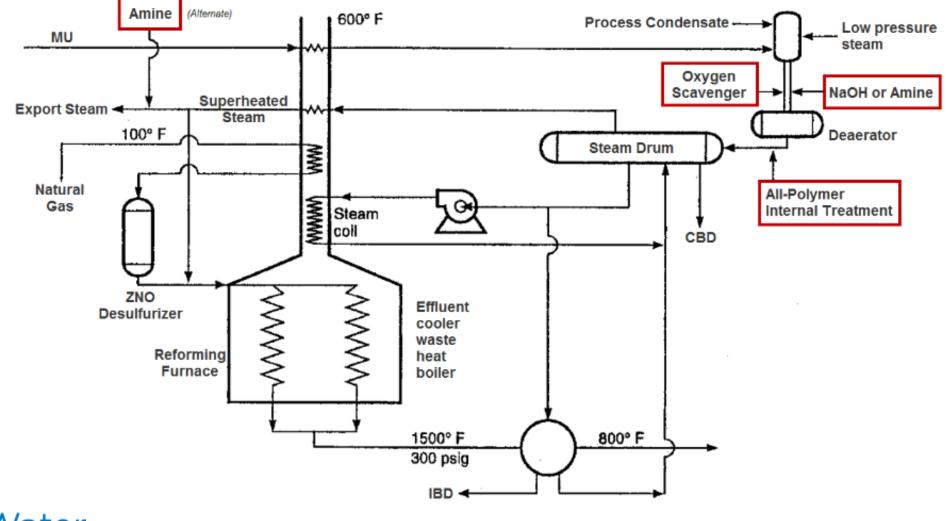
There is RISK. Caustic chemistry should NOT be fed to the feedwater if you have stainless steel feedwater heaters and feedwater on the shell side. This can create conditions that lead to stress corrosion cracking of the stainless steel tube joints.

Industry standards such as ASME guidelines

- ▲ Nalco experience and research
- Proprietary technology


▲ SPC!

Best Practices


- Chemistry control parameters
- On-line analyzers
- ▲ Grab samples
- Chemical injection

Cycle Diagram Examples

Recommended Chemical Injection Locations

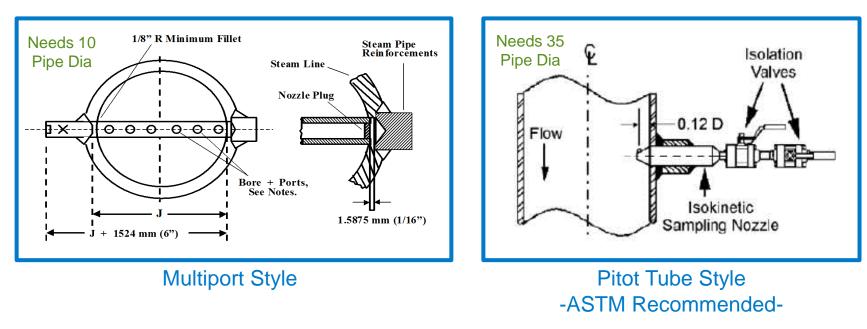
Steam Sampling

Why Sample?

 Provides VISIBILITY to potential issues before they become significant OPERATIONAL CONCERNS.

Where and How to Sample?

- Steam
- Isokinetic Nozzle
- Superheated or Saturated
- ASME & ASTM Guidelines


"What's measured improves"

Peter Drucker

Isokinetic Steam Sampling

- ▲ Isokinetic Sampling
 - More than just having the right nozzle
 - Required for saturated steam
 - Suggested for superheated steam
 - Standards outlined in ASTM D1066

Best Practices are a compilation of Lessons Learned

"Learn from the mistakes of others. There's not enough time to make them all yourself."

