CO, CAPTURE: HONEYWELL H₂ & CO₂ SOLUTIONS

JM H2 & SYNGAS TECHNICAL TRAINING SEMINAR

WILLIAM BLASKO SR. OFFERING MANAGER, HYDROGEN

30 November 2023

Honeywell UOP FORWARD LOOKING STATEMENTS

This presentation contains certain statements that may be deemed "forward-looking statements" within the meaning of Section 21E of the Securities Exchange Act of 1934. All statements, other than statements of historical fact, that address activities, events or developments that we or our management intends, expects, projects, believes or anticipates will or may occur in the future are forward-looking statements. Such statements are based upon certain assumptions and assessments made by our management in light of their experience and their perception of historical trends, current economic and industry conditions, expected future developments and other factors they believe to be appropriate. The forward-looking statements included in this presentation are also subject to a number of material risks and uncertainties, including but not limited to economic, competitive, governmental, technological, and COVID-19 public health factors affecting our operations, markets, products, services and prices. Such forward-looking statements are not guarantees of future performance, and actual results, and other developments, including the potential impact of the COVID-19 pandemic, and business decisions may differ from those envisaged by such forwardlooking statements. Any forward-looking plans described herein are not final and may be modified or abandoned at any time. We identify the principal risks and uncertainties that affect our performance in our Form 10-K and other filings with the Securities and Exchange Commission.

HONEYWELL CO₂ SOLUTIONS

Chemical Solvents

 Amine GuardTM & Amine Guard FS Process

UOP is largest licensor of high concentration MEA-based systems; formulated solvents have lower Opex vs. MEA (> 600 units)

BenfieldTM

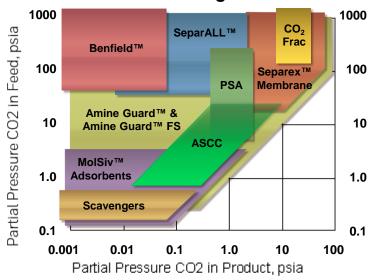
Totally inorganic solvent for pressurized flue gas & industrial processes (> 650 units)

 Advanced Solvent for Carbon Capture

Direct CO₂ capture from flue gas for refining, power, steel, cement, and natural gas industries (seeking first commercial scale application)

Physical Solvents

 SeparALLTM Process
 H₂S/CO₂ selectivity using Selexol
 solvent for sources containing sulfur or
 in oxidative conditions (>50 units)


Note: Solvent processes can be used in hybrid cycles with other technologies like PSA, membranes, and cryogenics to optimize ${\rm CO_2}$ capture

Adsorbents

 PolybedTM Pressure Swing Adsorption (PSA) System

Optimized adsorbents and cycles for CO_2 rejection (>1,150 units, 3 operating in CO_2 application)

Regions of Use for CO₂ Removal Technologies

Cryogenics & Membranes

For capture of CO₂ at higher partial pressure

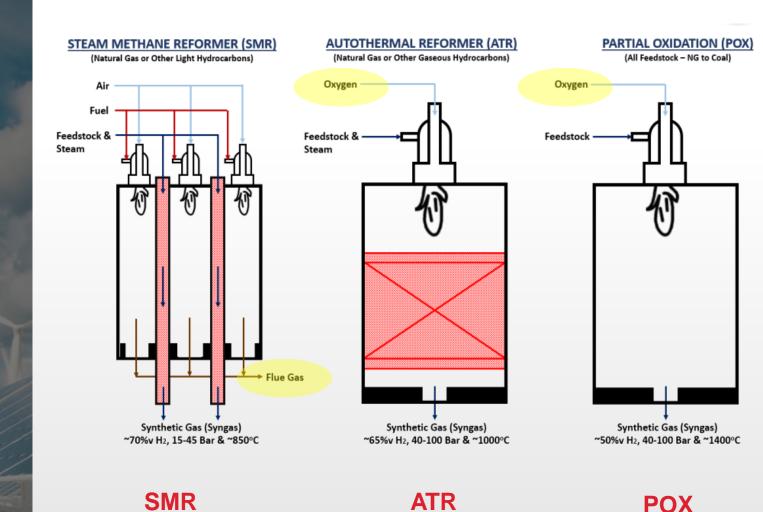
SeparexTM Membrane Systems

Significant experience in offshore capturing & sequestering CO_2 (>300 units)

Ortloff CO₂ Fractionation
 Not only captures but also provides CO₂ as a high purity liquid product (2 operating units)

UOP is leveraging existing technologies and expertise to deliver differentiation in new applications

Proven Technologies can be used for CO₂ Capture



PROCESS

Steam Methane Reforming (endothermic) $CH_4 + H_2O \rightarrow CO + 3H_2$ $\Delta H = 206 \text{ kJ/mol}$

Partial Oxidation of Methane (exothermic) $CH_4 + 1/2 O2 \rightarrow CO + 2H_2$ $\Delta H = -36 \text{ kJ/mol}$

Water Gas Shift (exothermic) $CO + H_2O \leftarrow > CO_2 + H_2$ $\Delta H = -41 \text{ kJ/mol}$

Source: IEAGHG

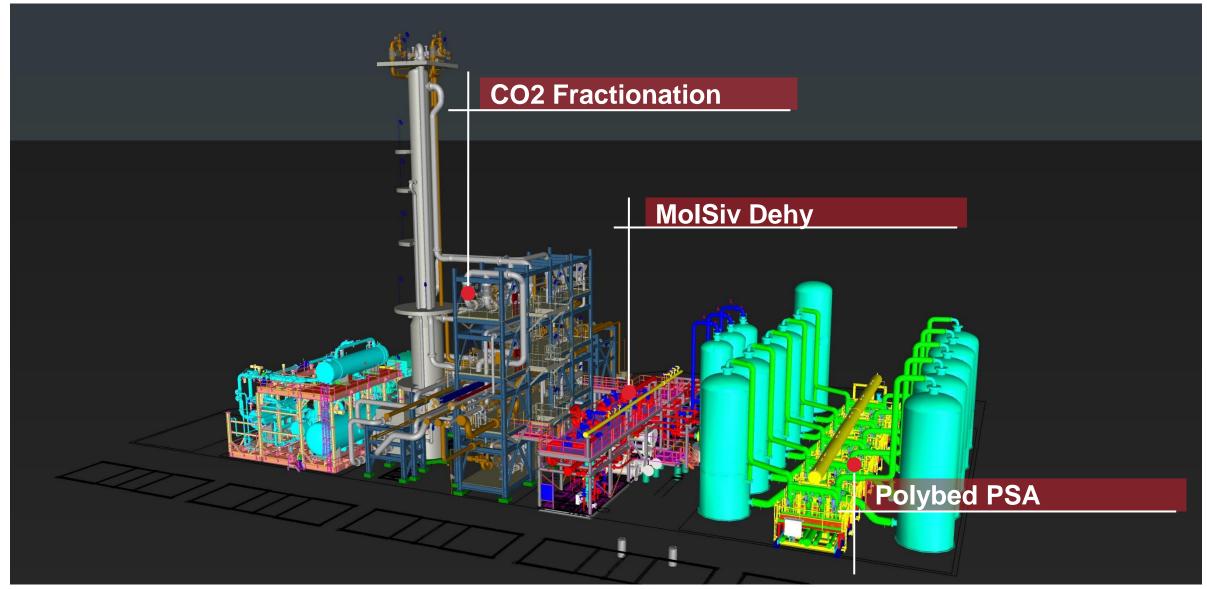
ATR RECYCLE CLOSED LOOP CARBON RECYCLE

UOP CO₂ FRACTIONATION SYSTEM

ATR FIRED FUEL ► H₂ PRODUCT TAIL GAS H_2 **DRIER PSA SHIFTED SYNGAS** CO_2 **RECYCLE INLET GAS CHILLER** CO_2 **OVHD FRACTIONATION PSA ATR SYSTEM RECYCLE** REFRIG. UNIT **PRODUCT** Off-gas Recycle to ATR Feed

- Low Carbon Emissions
- Higher Feedstock Efficiency

Scope 1 Emissions: <0.1 kg CO₂/ kg H₂


Carbon-free fuel gas stream produced in H₂

- Selective rejection of inerts
- Approximately 30 psi(g)
- Approximately 90 mol% H₂ and 10% N₂ + Argon

Equal expected OpEx vs. Configuration 1

2% - 5% higher CapEx vs. Configuration 1

CO2 FRACTIONATION UNIT

VALUE PROPOSITION - INTEGRATION OF AUTO-THERMAL REFINING AND CRYOGENIC FRACTIONATION TECHNOLOGIES

- Scope 1 emissions can be reduced to <0.1 kg of CO₂ per kg of H₂ by recycling Carbon molecules to the ATR and purging inerts. Overall carbon intensity will be driven by fugitive emissions upstream of the process and the carbon footprint of the electricity consumed from the grid
- Lower Natural Gas consumption but more Electrical Power consumption. Potential for Scope 2 emissions to be reduced over time as the grid power leverages renewable energy sources
- Scope 3 emissions driven by fugitive emissions upstream
- H₂ product is at 99.9+% purity
- No C and no inerts (Ar and N) to H₂ Product
 Stream (C recycled, inerts purged in other streams)

- UOP's flow scheme has different battery limits, and this provides more flexibility to adapt to the needs of the Customer while optimizing performance
- Liquid CO₂ product stream is inherent to process and is ready for storage and shipping, and would save CAPEX and energy in case CO₂ needs to be compressed for high-dense pipeline transportation
- Reliability: H₂ product supply can be delivered even when CO₂ capture system is shutdown
- Equipment count of UOP Cryo fractionation system is about 2/3 that of an amine system, which helps reduce Plot Area required and reduces maintenance requirements

HONEYWELL IS WINNING WABASH VALLEY RESOURCES

Overview

UOP selected as technology provider for carbon capture and H_2 purification for clean H_2 production from gasifier at **Wabash Valley Resources (WVR)** in West Terra Haute, Indiana

Why it Matters

- One of the largest CCS projects (1.65 Mt/yr CO₂)
- Second US project to sequester CO₂ in permanent geologic storage
- Demonstrates large-scale commercially viable clean H₂ and CCS project under current regulatory and policy framework

Technology

Integration of Modular MOLSIV, Modular Ortloff CO₂ Fractionation System, Modular PSA

Solution Advantages

- Commercially proven technologies
- Lower Capex / Opex
- Faster modular execution
- Parallel on-site and module fabrication execution
- High-quality shop-fabricated equipment
- Efficiency: single supplier for technology and equipment allows for less handoff
- Bankability: well-recognized in the market for both technology licensing and modular equipment

One of the largest carbon capture and clean H₂ production facilities in the US to date

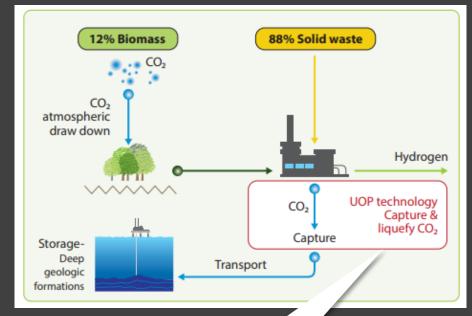
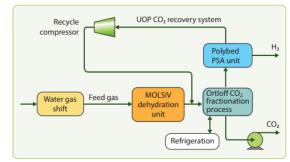



Figure 1: Overall flow scheme

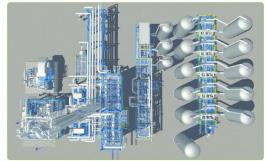
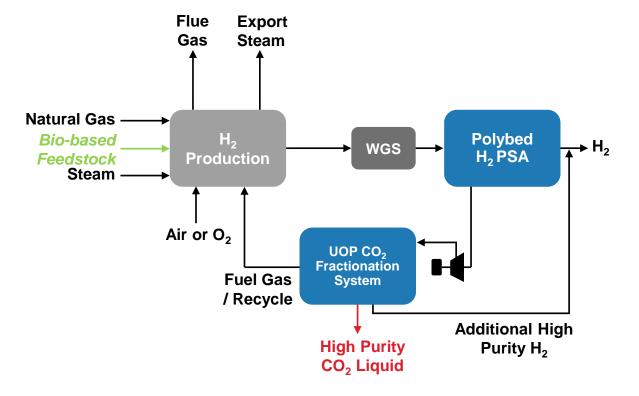
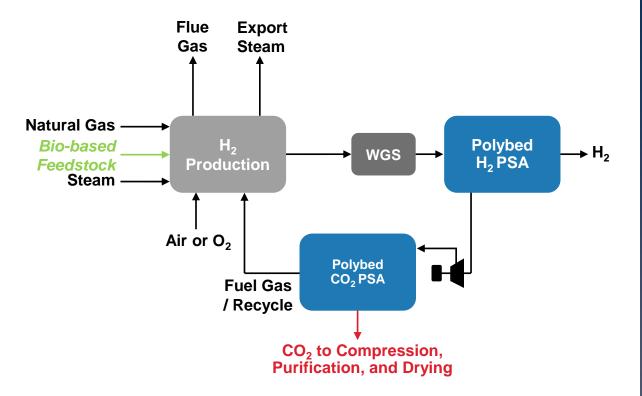



Figure 2: Honeywell CO₂ capture solution

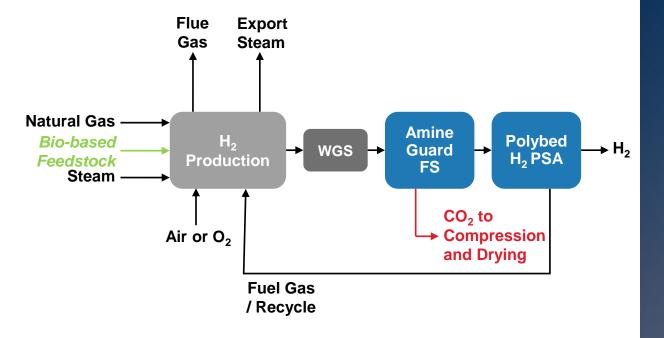
SMR RETROFIT UOP CO₂ FRACTIONATION SYSTEM



- Up to 20% additional H₂ yield from SMR**
- >99% CO₂ recovery from PSA tail gas (~60% overall direct CO₂ emissions reduction in typical existing SMR)
- CO₂ liquid purity of 99-99.9+ mol%
- Food-grade CO₂ can be produced if required
- Liquid CO₂ product ideal for rail or ship transport
- No steam usage for carbon capture
- "Bolt-on" system
- \$20-40/MT CO2 captured with H2 credit*

^{*} Cost of CO₂ captured includes operating costs, fixed costs, USGC basis annualized capital costs (10%/yr), and product value for additional H₂ production where applicable. Low end of range shown is for \$3/GJ (LHV) and high end of range is for \$6.6/GJ (LHV) natural gas price. CO₂ is provided as high-pressure product at plant battery limits and does not include CO₂ sequestration costs or any tax or credits for CO₂. Cost of CO₂ captured is subject to key variables - stream composition, CO₂ delivery requirement (pressure, purity, phase), utility price set, price of H₂, and geographic location; and is calculated based on internally developed models.

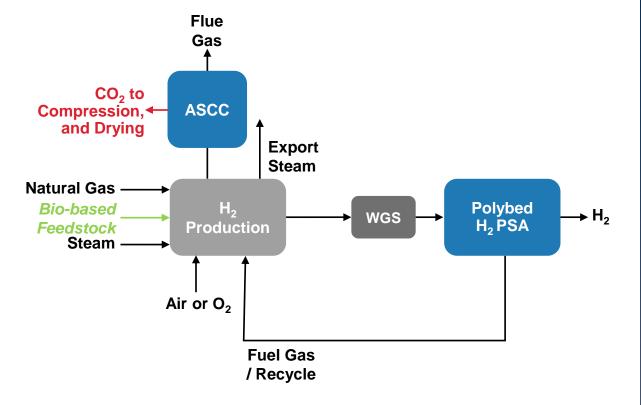
^{** 90%} H₂ recovery from existing PSA tail gas proven in pilot plant testing and commercial plants. Overall H₂ yield increase depends on the performance of the existing PSA, and is maximized by retrofitting an asset with a low H₂ recovery existing PSA.


SMR RETROFIT CO₂ POLYBEDTM PSA

- Lowest capex and opex compared to solvent and cryo systems
- 90-98% CO₂ recovery from PSA tail gas ~50-60% overall direct CO₂ emissions reduction in typical existing SMR)
- >95 mol% CO₂ gas purity
- Optimal when lower purity or lower recovery of CO₂ is acceptable
- No steam usage for carbon capture
- "Bolt-on" system
- \$35–50/MT **CO**₂*

*Cost of CO₂ captured includes operating costs, fixed costs, USGC basis annualized capital costs (10%/yr), and product value for additional H₂ production where applicable. Low end of range shown is for \$3/GJ (LHV) and high end of range is for \$6.6/GJ (LHV) natural gas price. CO₂ is provided as high-pressure product at plant battery limits and does not include CO₂ sequestration costs or any tax or credits for CO₂. Cost of CO₂ captured is subject to key variables - stream composition, CO₂ delivery requirement (pressure, purity, phase), utility price set, price of H₂, and geographic location; and is calculated based on internally developed models.

SMR RETROFIT AMINE GUARDTM FS



- Lower electricity requirement compared to cryo or PSA systems, but requires steam and does not provide additional hydrogen recovery
- >99% CO₂ recovery from SMR syngas (~60% overall direct CO₂ emissions reduction in typical existing SMR)
- 99 mol% CO₂ gas purity
- Revamp of H₂ PSA may be required.
- Extensive commercial experience in natural gas treating, synthesis gas treating, direct iron ore reduction, and ammonia plants
- \$45-60/MT.CO₂*

^{*} Cost of CO₂ captured includes operating costs, fixed costs, USGC basis annualized capital costs (10%/yr), and product value for additional H₂ production where applicable. Low end of range shown is for \$3/GJ (LHV) and high end of range is for \$6.6/GJ (LHV) natural gas price. CO₂ is provided as high-pressure product at plant battery limits and does not include CO₂ sequestration costs or any tax or credits for CO₂. Cost of CO₂ captured is subject to key variables - stream composition, CO₂ delivery requirement (pressure, purity, phase), utility price set, price of H₂, and geographic location; and is calculated based on internally developed models.

SMR RETROFIT

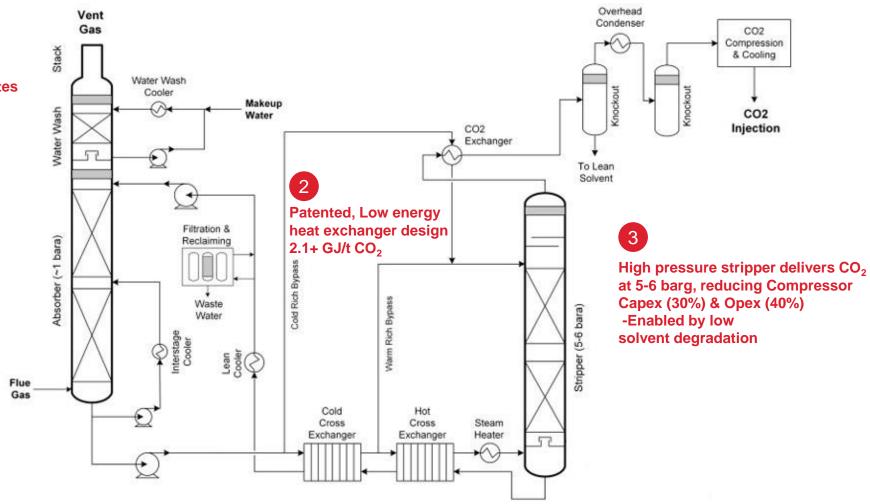
ADVANCED SOLVENT FOR CARBON CAPTURE

- >95% CO₂ recovery from SMR flue gas
- 10+ years of R&D, technology demonstrated at pilot scale
- Exploring first commercial unit applications
- Key advantages compared to alternative flue gas carbon capture systems:
 - High mass transfer rate (smaller absorber)
 - High stability solvent (higher pressure stripper and lower solvent makeup rates)
 - Novel heat exchange tailored to solvent
 - Advanced absorber with proprietary internals

	Pre-Combustion			Post-Combustion
	UOP CO ₂ Fractionation System on Tail Gas	CO ₂ Polybed PSA on Tail Gas	AmineGuard FS on Syngas	Advanced Solvent System on Flue Gas
CO ₂ Recovery from Stream	>99% Liquid product	90-98% Gas phase product	>99% Gas phase product	>95% Gas phase product
Overall CO ₂ Capture	Depends on configuration	95%+		
Additional H ₂ Yield	10-20%	NO	NO	NO
Ultra High CO ₂ Purity	YES	NO	NO	NO
Steam Usage	NO	NO	YES	YES
Retrofit	Bolt-on	Bolt-on	May require main PSA retrofit	Bolt-on
Commercial Experience	YES, ref. units in similar applications	YES, ref. units in similar applications	Extensive	Exploring first commercial applications
Cost of CO ₂ Captured*, \$/MT	20–40 (includes H ₂ credit)	35–50	45–60	55-70

^{*}Cost of CO₂ captured includes operating costs, fixed costs, USGC basis annualized capital costs (10%/yr), and product value for additional H₂ production where applicable. Low end of range shown is for \$3/GJ (LHV) and high end of range is for \$6.6/GJ (LHV) natural gas price. CO₂ is provided as high-pressure product at plant battery limits and does not include CO₂ sequestration costs or any tax or credits for CO₂. Cost of CO₂ captured is subject to key variables - stream composition, CO₂ delivery requirement (pressure, purity, phase), utility price set, price of H₂, and geographic location; and is calculated based on internally developed models.

Best option depends on project requirements



ADVANCED SOLVENT CO₂ CAPTURE PROCESS

Commercial Ready offering targeted for Flue Gas Applications:

Refining & Petchem, Power, Steel, Cement

Advanced Solvent /w
high mass transfer rates
- Shorter Absorber 30% cost savings

Advanced Solvent Offering Reduces overall CAPEX and OPEX

ASCC DEVELOPMENT & TESTING

- On-going development over the past 20 years
- Culmination of 42 PhD dissertations and three MS theses
- >1,200 hours Pilot Plant testing (on 17" absorber) since 2006
- CO₂ concentrations 3-20%
- Flue Gas flow rates of 350-600 CFM

ASCC NCCC DEMONSTRATION

- NCCC facility located at Alabama Gaston Power Plant
- 0.5 MW coal-fired flue gas,
 1500 CFM Flow with 8 TPD CO₂ Capture
- CO₂ concentrations tested
 2% (2018) and 4%
 (2019) and 2023 (on-going thru early Aug– available to host Customers)
- Each campaign operated for 2000+ hours – a total of over 4000 hours to date and counting
- Oxygen content tested up to 15%

ASCC RECENTLY COMPLETED DESIGNS

460 MW CCGT

CO₂ Capture: 1600 KMTA

Customer: Mustang Power Station, TX

Design Status: FEED COMPLETED 2022

300 MW PFBC

CO₂ Capture: 3100 KMTA

Customer: Consol 21st

Century Power Plant

Design Status: PRE-

FEED COMPLETED 2022

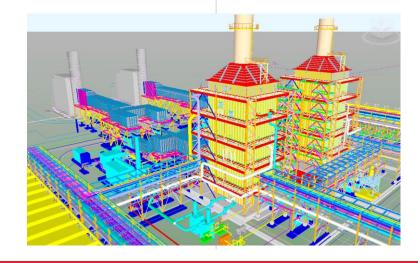
Simple Cycle **Turbine**

CO₂ Capture: 10 KMTA

Customer: Confidential

Design Status: PRE-

FEED COMPLETED 2022

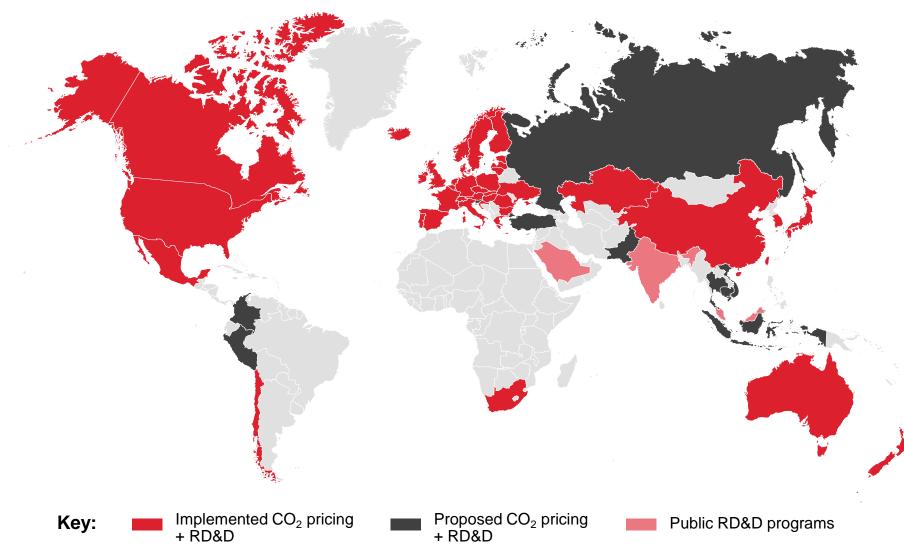

FCC Flue Gas

CO₂ Capture: 10 KMTA

Customer: Ecopetrol

Design Status: PRE-

FEED COMPLETED, 2023

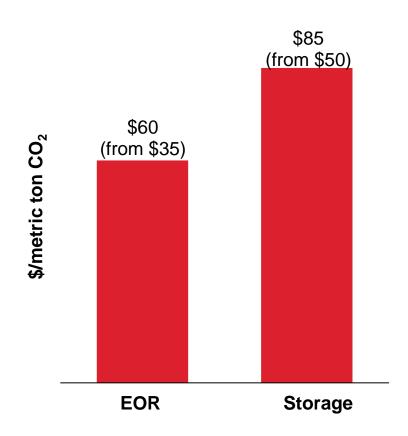


Advancing ASCC Across Diverse Application Set

GLOBAL CO₂ POLICY

CO₂ PRICING:

- Emissions
 Trading Schemes
 (45 countries)
- Carbon intensity/ LCA credits
- Tax Credits
- Capex Credits


RD&D

 Public funding for research, development, and demonstration

USA POLICY UPDATE CARBON CAPTURE

- USA Tax Code 45Q Tax Credit (performance-based); incentives updated 2022 via the Inflation Reduction Act (IRA) – signed into law on 8/16
- Increased \$/ton credits see chart at right
- Project Thresholds:
 - Power Generation must capture greater than 18,750 metric tpy & more than 75% removal of baseline CO₂ production (Previously 500,000 tpy)
 - Industrial Requirements, must capture a minimum of 12,500 metric tpy (Previously 100,000 tpy)
 - Must begin construction before **JANUARY 1, 2033**, and can claim the credit for up to 12 years after being placed in service (previously 2026)
- Included Direct pay provisions
 - Allow projects to receive direct pay for first 5 years of operation, while non-profits and co-ops can receive direct pay for full 12 years of credit payout


45Q Tax Credits

Policy support has strengthened to increase project development

USA POLICY UPDATE HYDROGEN PRODUCTION

- USA Tax Code 45V Tax Credit (performance-based);
 Creates new clean hydrogen production incentive with direct pay provisions
 - Qualified facility means a facility that is
 - (1) owned by the taxpayer
 - (2) which produces qualified clean hydrogen, and
 - (3) the construction of which begins before January 1, 2033
 - Qualified Clean H₂ is H₂ produced with lifecycle GHG rate of not greater than 4 kg CO₂/kg H₂ produced
 - Credit value ranges from \$0.12/kg to \$3.00/kg max, if Prevailing wage and labor requirements are met (5x multiplier from base)
 - Credit increases in value as the lifecycle emissions decrease

UOP analysis; CO2 intensity considers upstream emissions of 1.8 kg CO2 / kg H2 as well as estimated H2 plant emissions after carbon capture. Bubbles are indicative to show where production methods may qualify for credits.

Policy support has strengthened to increase project development

REGIONAL POLICY HIGHLIGHTS

EUROPE

European Union

 ETS with cap and annual rate of reduction, ~\$80/tonne in Nov '22

United Kingdom:

 ETS covering power gen & industry, \$90/tonne in Nov '22

Denmark:

 5 billion Euro investment over 10 years for CCUS projects; 70% emission reduction by '30, most aggressive in Europe

Netherlands:

 Sustainable Energy subsidy fund increased from 5 to 13 billion, ½ to Porthos CO₂ storage project

ASIA PACIFIC

China:

 Cap and trade based on emission intensity, starting with coal and gas power plants '(<\$10/tonne)

Australia:

 Large emitters (>100KMTA) exceeding baseline must offset thru purchased credits; CCU allows credit generation

Thailand, Malaysia, Indonesia, Korea:

- Early stages of policy development
- Major O&G evaluating hubs in Singapore, Malaysia, Indonesia

REST OF WORLD

Middle East:

 Most countries have climate policies, but not CCS specific. Growth being led by vision of governments focused on decarbonization as growth opportunity. Voluntary markets in KSA, UAE, Egypt.

LATAM:

- Very early stages of policy development;
- Brazil on track to inject 40 Mt CO2 from Petrobras project by '25

Canada:

 Investment credit available for up to 50% capex; Alberta province supporting hub development

Global policies developing in support of projects

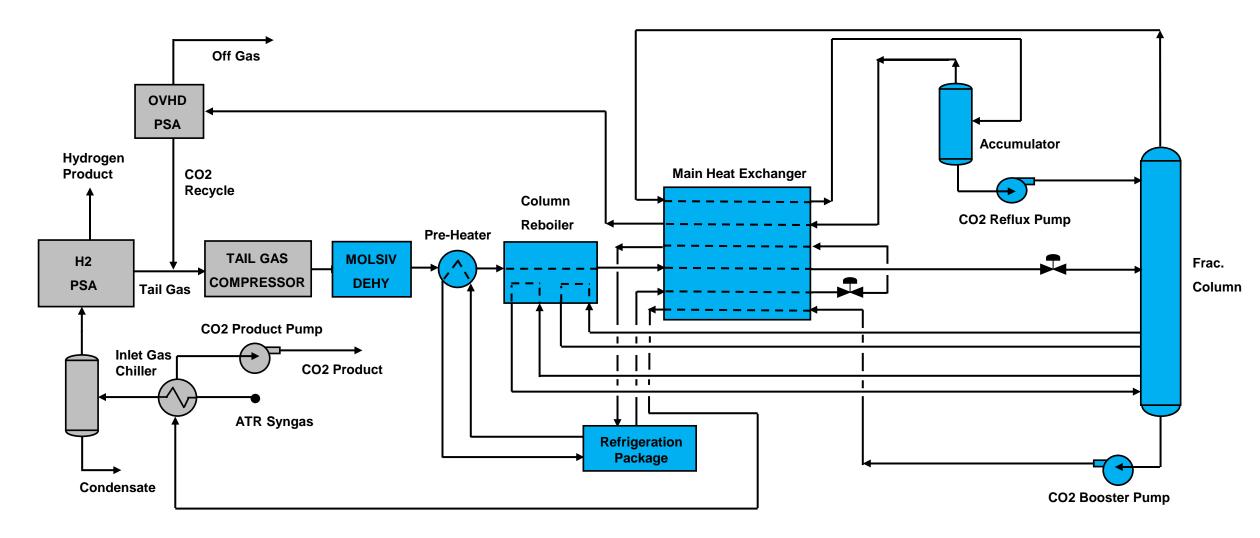
HON ASCC TECHNOLOGY EVALUATION

HON UOP ASCC offers significant advantages over legacy MEA technology and commercially available 2nd gen solvents

Basis: Typical values across flue gas ranges (100-1500 MMSCFD) and Concentrations (3.5% - 18% CO2); 200KMTA – 1000 KMTA CO2 capture

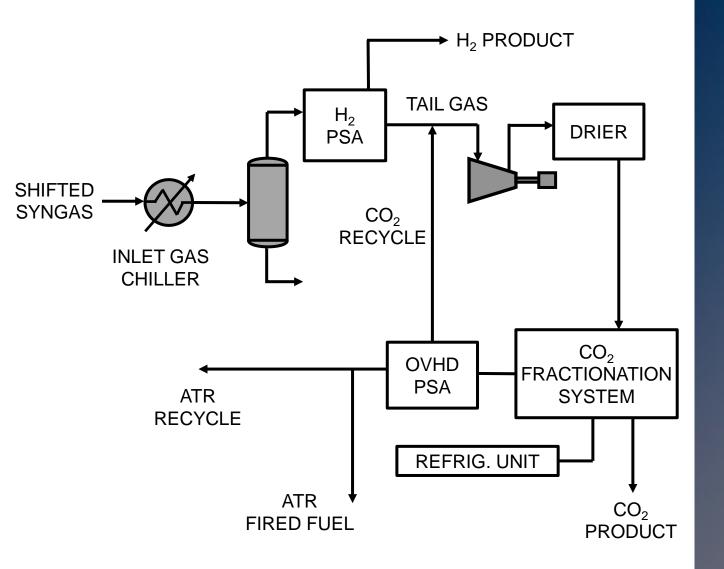
	HON ASCC	Competitor A ⁽²⁾ (30% MEA+)	Competitor B ⁽²⁾ (2 nd Gen Solvent)	Value from HON ASCC
CO ₂ Capture rate (%)	95-99 ⁽¹⁾	90 (typ.)	95 (typ.)	Maximum CO2 capture to maximize credits / minimize penalties
Quench Column	Not Required for low CO ₂ , low water (<10%), & low temp (< 120C) – ideal for CCGT	Required	Required	When applicable, enables: 11% reduction in installed equipment cost 18% reduction in cooling water
Absorber Height (ft) Packing Height (ft)	110 – 130 50 ⁽³⁾	+>20% Shell Height +40-50% Packing Height ⁽⁴⁾	+>20% Shell Height +40-50% Packing Height ⁽⁴⁾	30% savings in absorber equipment cost
CO ₂ Stripping Pressure (psig)	65-85	<10	<10	30% Compressor Capex Savings (5) 40% Compressor Opex Savings (5)
Steam Consumption (GJ / t CO ₂)	2.1 – 2.6	3.3-3.7	2.4-3.3	10-30% Opex Savings
Solvent Loss (kg/tonne CO ₂)	<0.1 – 0.5	8x	1x – 2x	Equivalent or Lower annual opex using ASCC

^{1.} Recovery estimates based on varying temperatures over summer/winter seasons


^{2.} All data above sourced from publicly available information.

^{3.} Including water wash section

^{4.} Estimate based on T-T


^{5.} Assuming 2000 psig injection pressure

CO2 FRACTIONATION SYSTEM

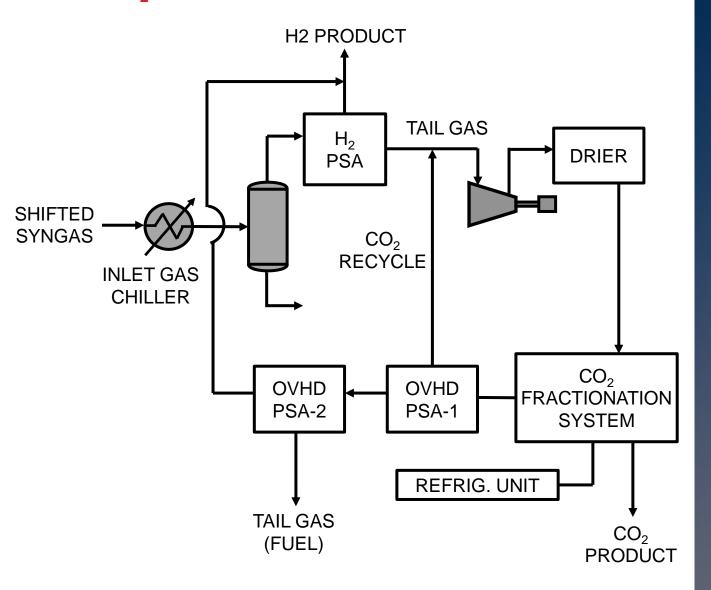
ATR RECYCLE CONFIGURATION 1

UOP CO₂ FRACTIONATION SYSTEM

Off-gas Recycle to ATR Feed

- Low Carbon Emissions
- Higher Feedstock Efficiency

Recycle Gas Slipstream to ATR Fired Heater


- Steam Generation benefit
- Higher Feedstock Efficiency

Inerts (N₂ + Argon) rejected in ATR Fired Heater

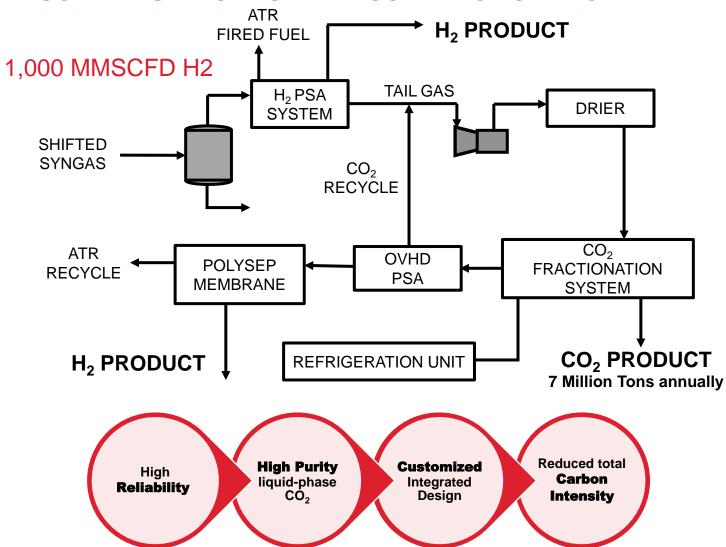
Scope 1 Emissions: 0.1 – 0.3 kg CO₂/ kg H₂

NO ATR RECYCLE

UOP CO₂ FRACTIONATION SYSTEM

Lower Cost Option

~10% reduced power consumption


Flexible Uses for Secondary H₂ Product Stream

- Fuel-Cell Grade
- Chemical Grade
- Fuel Grade
- Delivery at different pressures

Scope 1 Emissions: 0.3 – 0.5 kg CO₂/ kg H₂

EXXONMOBIL CASE STUDY

UOP H2 PURIFICATION AND CO2 FRACTIONATION

³ Based on press release issued Feb 15, 2023, announcing HON H2 tech in Exxon Baytown facility. Link

CO₂ Fractionation System

- Enables the capture of about 7 million tons of CO₂ annually, equivalent to the emission of 1.5 millions of automobiles for one year¹
- 98% CO₂ emissions captured across Low-Carbon Hydrogen production facility²

H₂ Purification

- High Purity H₂ produced from Pressure Swing Adsorption and PolysepTM Membrane technologies
- ExxonMobil's H₂ production project will enable up to 30% of scope 1 and scope 2 emissions reduced at their Baytown facility³

¹ Based on the EPA's GHG equivalency calculator comparing nearly 7 million tons of CO2 per year with gasolinepowered passenger vehicles on the road.

 $^{^2}$ CO $_2$ equivalent emissions is a calculated value based on the combined carbon compounds emitted from the Hydrogen production and Carbon Capture equipment plus the combined carbon compounds in the H2 product