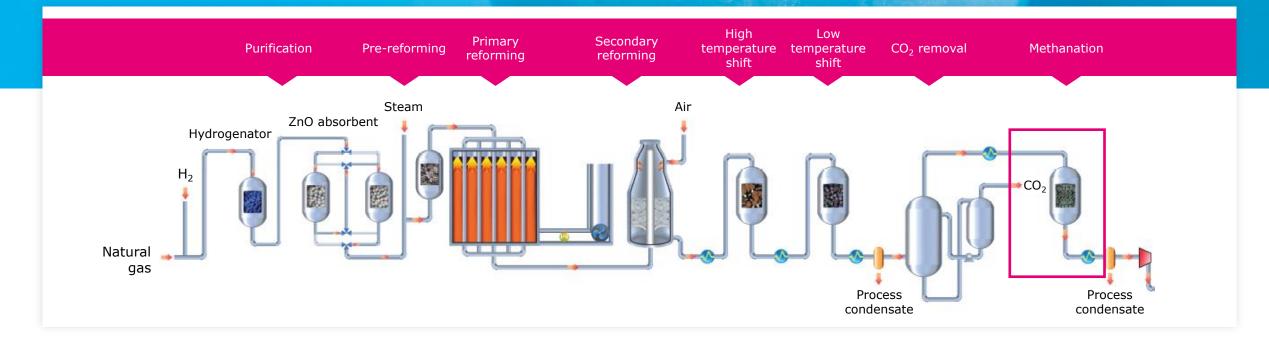
Johnson Matthey Inspiring science, enhancing life

Americas hydrogen and syngas technical training seminar

Methanation fundamentals

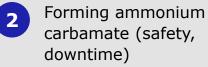

Scott Commissaris

Contents 01 Introduction 02 Methanation chemistry 03 Catalyst operation 04 Nickel carbonyl 05 Summary

JM

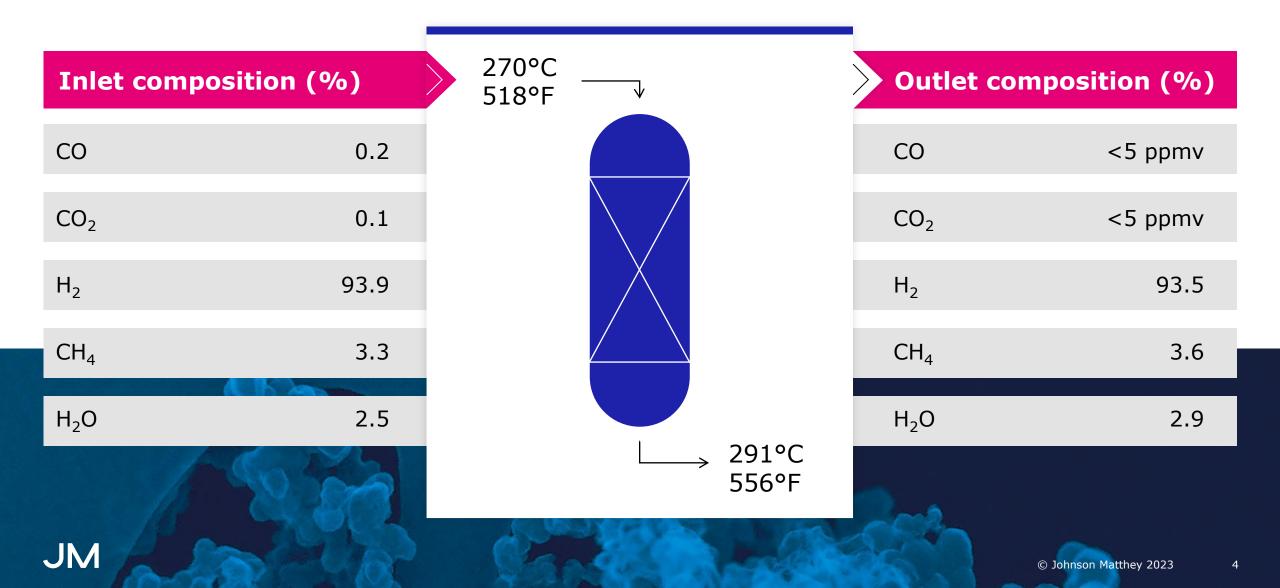
2

Introduction



COx needs to be reduced to single figure ppm levels to avoid

JM


Poisoning ammonia synthesis catalyst (throughput)

3 Freezing out in cold boxes (downtime, throughput)

Typical process conditions

Methanation chemistry

Theoretical aspects

	_			a warda	00	
Methanation reactions are strongly exothermic (and consume a lot of hydrogen!)	$CO + 3H_2 \rightleftharpoons CH_4 +$	H ₂ O		ΔH =	-206kJ/mol	
	$CO_2 + 4H_2 \rightleftharpoons CH_4 -$	+ 2H ₂ O		ΔH =	-165kJ/mol	
Temperature rise	 74°C for each 1% 60°C for each 1% 					
				6.1		0.
Conversion is not equilibrium limited, governed by kinetics	 CO₂ only reacts wl 	 CO is methanated first CO₂ only reacts when CO concentration is 200-300 ppm 		≥ CO + H ₂ O		
	 Methanation of CO₂ is a two stage reaction 		CO + 3H ₂ ;	\Rightarrow CH ₄ + H ₂ O		
JM					© Johnson Matthey 2023	0 ⁰ 6

Methanation reaction

Good methanation catalyst will demonstrate

High conversion

JM

COx slip <5ppm standard, 1-2 ppm common

Low temperature activity

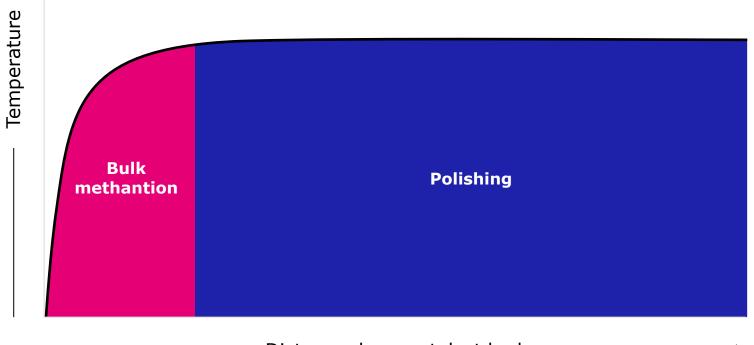
Increased Ni content and effective Ni surface area

2

High mass transfer rate

3

Smaller pellets to reduction diffusion limitation at higher temperatures


Reaction zones

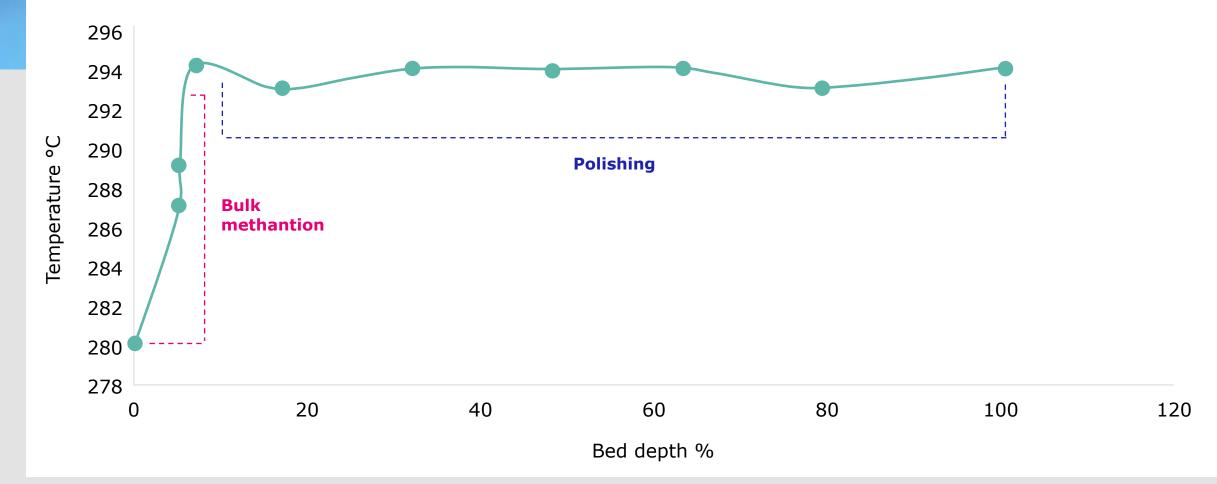
Reaction can be

considered as 2 zones

'Bulk methanation' quickly reducing carbon oxide <0.05% increasing gas temperature

'Polishing' zone for required exit specification

Distance down catalyst bed


JM

2

00

Typical data

KATALCO 11-series

KATALCO[™] 11-series

- Can run at inlet temperatures as low as 200°C
- Lifetimes 20-30 years due to high and stable activity
- Low and stable pressure drop
- High thermal stability

JM

 Robust enough to withstand (back) washing in the event of external contamination

KATALCO 11-series 'R'

- Pre-reduced and stabilized
- Ideal for the top 20%-30% of the catalyst bed
- Simplifies start up
- Saves up to **12 hours**

KATALCO 11-5MC / 11-6MC

Very lowest pressure drop dry methanation catalyst due to specialized shape

Pressure drop governed by equivalent diameter and voidage

High voidage, hence low pressure drop

Relative PD estimate

Shape	Relative pressure drop
3-6 mm sphere	103%
KATALCO 11-4	100%
5 mm diameter ring	41%
KATALCO 11-5MC	30%

11

Catalyst operation

JM

Pre-reduced catalyst

Can use **KATALCO** 11-series pre-reduced and stabilized variants

Made under carefully controlled conditions to give the highest possible activity

Alternative options to use

100% bed pre-reduced (more expensive)

Fully pre-reduced

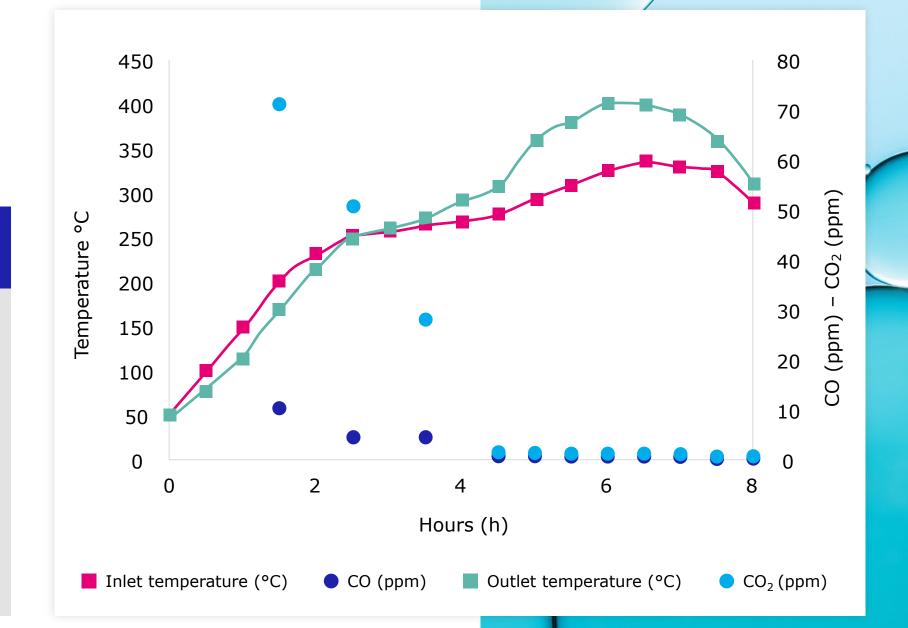
(cost effective)

20-30% pre-reduced

20%-30% of catalyst bed

Option 2 top layer strikes fast; simplifies start up saving ~12 hours compared to fully oxidic charge

Methanation start-up: example of bed reduction


30 % pre-reduced KATALCO 11-4R

For quick 'strike'

Rapid reduction of bottom bed at 400°C

Minimize risk of nickel carbonyl formation

Ensure maximum catalyst activity was achieved

Normal operation

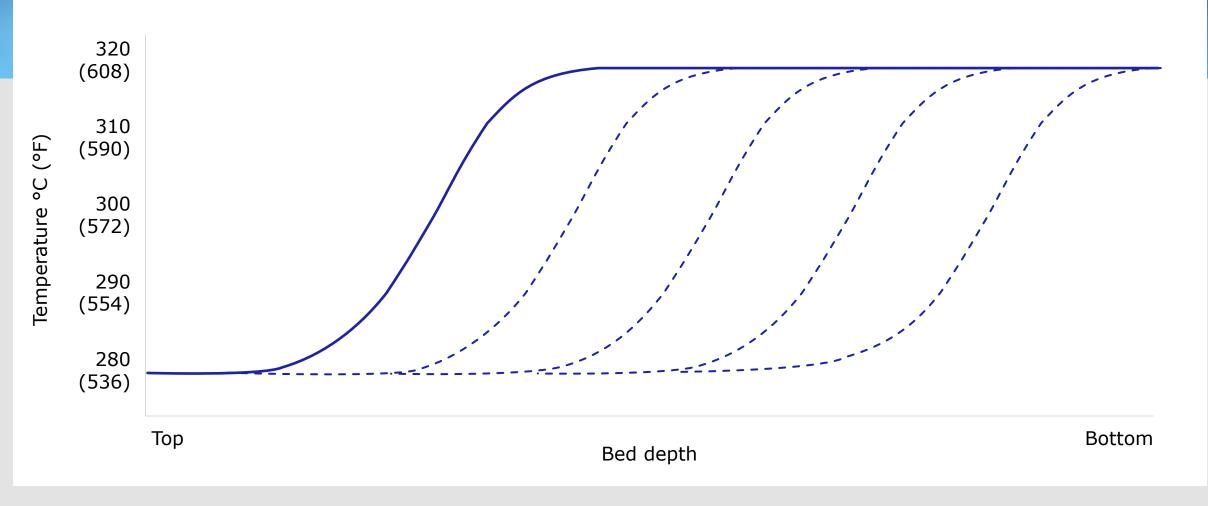
Originally over-designed, high catalyst activity

Most reaction in top of bed

Aging mechanism is gradual poisoning

Profile moves down the bed

Catalyst lives 10-15 years


Conversion of carbon oxides dependent on outlet temperature

If CO inlet increases, exit temperature also increases, reaction rate increases and exit carbon oxide level decreases

this may allow a reduction in inlet temperature

Methanation catalyst aging

Abnormal conditions

Gradual steady rise across whole bed

Inadequate reduction?

Sudden movement of reaction zone with no change in <u>slope</u>

Poisoning of top?

Poor reduction of top?

Normal temperature profile, high outlet carbon oxides Channelling through bed?

Mechanical problems? (bypass valve, heat exchanger) Analytical problems?

© Johnson Matthey 2023

17

Unusual operating conditions

High CO levels

LTS bypassed

Total concentration of carbon oxides < 3%

Inlet temperature 210-250°C (410-480°F)

If necessary, lower rate through HTS and increase S:C ratio

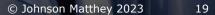
High water levels Normal level 2-3% water in inlet gas

If > 3%, can lead to high CO_2 in exit gas

Might need to increase bed inlet temperature

Operating experience up to 7% water

Plant mal-operation


Normal maximum exit temperature is 350°C (660°F) Excursions up to 600°C (1100°F) for several hours can be tolerated

In the event of a temperature runaway, the vessel must be protected:

- Isolate on inlet side
- Blow down to atmospheric
- Purge with nitrogen to aid cooling
- Exclude air to avoid exothermic oxidation

1.2

Catalyst poisons

Sulfur is a **poison**, but normally **present** unless LTS bypassed

Most poisons originate from CO_2 removal system

Carry-over of a **small amount of liquid** not generally serious

Common poisons	\checkmark	Effect \checkmark	
K ₂ CO ₃		Blocks pores; removable	
AS ₂ O ₃		Serious; irreversible poisoning	
Sulpholane		Decomposes to S; poison	

0

Large volumes will have a serious effect

Shutdown

JM

If process gas temperature > 200°C (390°F), can be left in atmosphere of process gas for short periods

Below 200°C (390°F),

must be purged with

an inert to prevent

carbonyl formation

Reduced catalyst pyrophoric; oxidation very exothermic:

- Spread catalyst thinly on ground
- Have water hoses available
- Transport in metal skips/metal-sided trucks

Nickel carbonyl

JM

Nickel carbonyl hazard

Formation of Ni(CO)₄ is a potential hazard Exposure to 4ppm v/v for one minute gives severe toxic effects

Exposure to 2ppm v/v for a short time causes illness

Target daily average concentration 0.001ppm v/v

Nickel carbonyl is a colourless liquid

Flammable in air, insoluble in water

Nickel carbonyl boils at 43°C

Avoiding Ni(CO)₄ formation

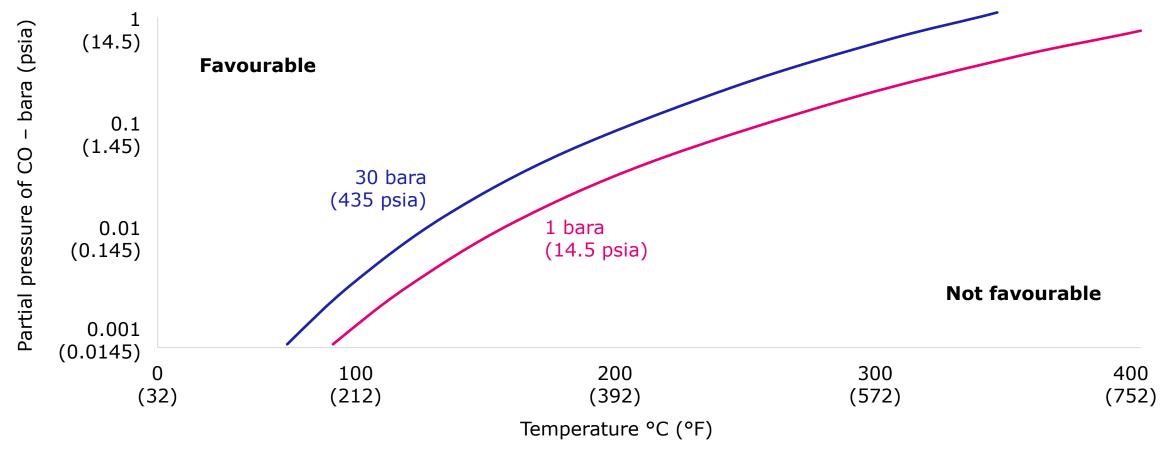
Under normal operating conditions

Steam reformer has a high CO and high Ni, but high temperatures

After LTS, temperatures low, but low CO and low Ni

Under normal operating conditions

Start up, shutdown, etc. – it is possible to form $Ni(CO)_4$


To avoid formation of Ni(CO)₄

Keep the temperature above 200°C when the methanation catalyst is exposed to gas containing CO (check design guide graph)

Nickel carbonyl formation

Summary

JM

Methanation summary

Methanation is last purification step in ammonia production

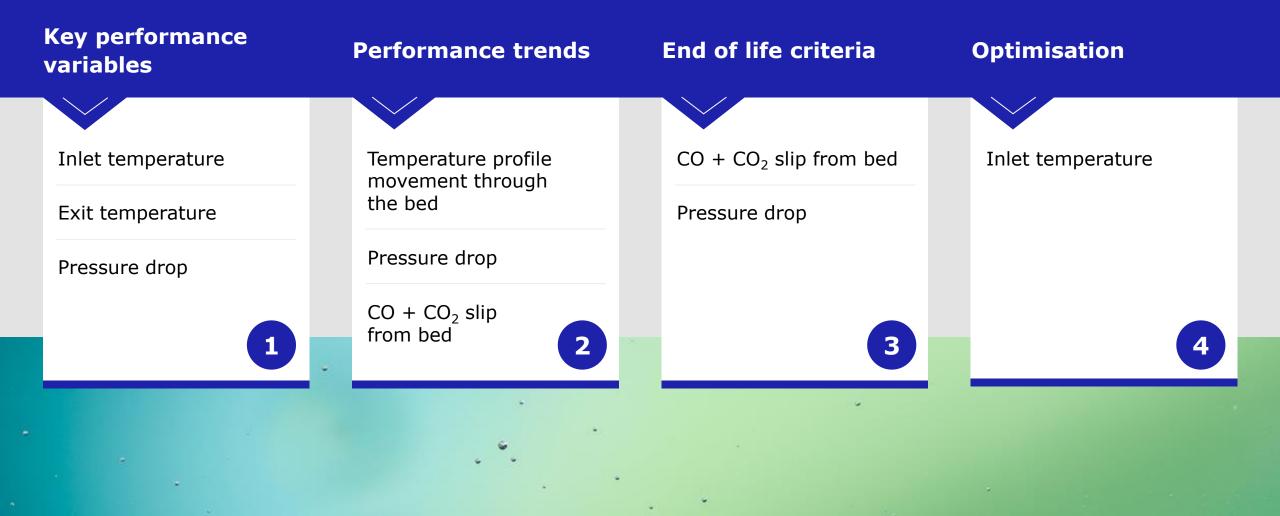
Low carbon oxide slip ensures long ammonia synthesis catalyst life

KATALCO

11-4 methanation catalyst

- Available pre-reduced and stabilized
- Robust, offering low stable pressure drop
- Has been back-washed often without problem
- High activity and operate at temperatures down to 210°C

KATALCO 11-5MC/11-6MC methanation catalysts


- Same performance benefits as KATALCO 11-4 with significantly lower pressure drop
- Selection optimized for typical and lower temperature operation

Abnormal catalyst operation

Catalyst poisons and the nickel carbonyl hazard

Methanation summary

