Johnson Matthey Inspiring science, enhancing life

JM

Americas hydrogen and syngas technical training seminar

Selective Catalytic Reduction (SCR) Kevin Doura

Selective Catalytic Reduction (SCR)

NO_x is reduced by urea as follows:

• $4NO + 2(NH_2)_2CO + O_2 \rightarrow 4N_2 + 4H_2O + 2CO_2$

NO_x is reduced by ammonia across the SCR catalyst:

- 4NO + 4NH₃ + O₂ \rightarrow 4N₂ + 6H₂O (standard)
- NO + NO₂ + 2NH₃ \rightarrow 2N₂ + 3H₂O (fast)
- $2NO_2 + 4NH_3 + O_2 \rightarrow 3N_2 + 6H_2O$ (slow)

Undesirable side reactions:

- $4NH_3 + 5O_2 \rightarrow 4NO + 6H_2O$ (non-selective oxidation)
- $2SO_2 + O_2 \rightarrow 2SO_3$
- $2NH_3 + SO_3 + H_2O \rightarrow (NH_4)_2SO_4$
- $NH_3 + SO_3 + H_2O \rightarrow NH_4HSO_4$

Extruded ceramic honeycomb SCR catalyst

Low to medium-dust application

High specific surface area

High activity

Variable length and number of cells (6-300 CPSI)

Relative SCR catalyst operating temperatures

Typical conditions: SMR vs other SCR applications

Impact on design:

T, O_2 and H_2O concentrations

 NO_x concentration

Conversion targets

NH₃ Slip

Operating period

Future T window – higher >500°C (932°F)

Application	SMR	Gas turbines	Carbon black
Temp. window (°C)	275-450	CC: 300-400 SC: 470-550	300-360
NO _x conc. (ppm,@ref. O ₂)	30-60	~10-80	200-400
Act O ₂ (%)	1.2 -5.6	12-16	2.6-5
Ref. O ₂ (%)*	3	15	7
H ₂ O conc. (%)	16.5-27.8	10	~40
NO_x conv. target (%)	70-95	80-99	80-94
NH ₃ slip (ppm)	1-10	2-10	<5
Guarantee period (oph)	26,000- 44,000	8,000/16,000	24,000
Pressure drop limit (mbar)	2.5-10	2	10

* Depends on local requirements/legislation

SMR Steam Methane Reforming

CC Combined Cycle **SI** Simple Cycle

Deactivation mechanisms

Poisoning

Deactivation of the active sites by chemical attack (e.g. alkalis, phosphorus)

Adsorption of ammonia inhibited

DeNO_x-reactions **aren't possible any more**

Plugging

Microscopic blockage of the pore system by small fly ash particles

Fly ash particles are **diffusing** into the **catalyst pores**

Catalyst micro pore systems **plugged mechanically**

Masking

Macroscopic blockage of catalyst surface by cement fly ash

Reactive particles grow on the surface

Due to high amount of calcium oxide in the ash

JM

Steam methane reformer field experience

Main driver for catalyst deactivation in Steam Methane Reformer (SMR)

Poisoning - Chromium (Cr)

Masking

JM

Analytical methods:

Activity testing (fresh vs. aged) Chemical analysis – surface vs. bulk composition Physical parameters – surface area, pore volume

Catalytic activity negatively influenced by Cr deposition

• Fresh ref.

• SMR field aged

Visual discoloration of field returns due to poisons and ash

The data included herein were collected in a Johnson Matthey laboratory which has not been certified by the relevant authorities/agencies to perform emissions testing. These are indicative data and do not represent a guarantee that the tested catalyst or emissions system will pass the relevant emissions legislation.

9

Combination of physical-chemical techniques used to identify deactivation mechanisms

No signs of thermal aging or pore plugging

BET, PR distribution provides insight into thermal aging and/ or pore pluggage

XRF: bulk chemcial analysis

EDX: surface chemical anlaysis

Several mechanisms may overlap

\Rightarrow Cr the primary driver

JM

Elemental mapping by EPMA reveals Cr concentrates at surface

JM

SCR catalyst design considerations for SMR applications

The data included herein were collected in a Johnson Matthey laboratory which has not been certified by the relevant authorities/agencies to perform emissions testin These are indicative data and do not represent a guarantee that the tested catalyst or emissions system will pass the relevant emissions legislation.

12

Future outlook

Ammonia slip catalyst

Increase of NH₃ slip

Overdosing at high temperature due to NH_3 oxidation

Requires alternative solutions

High temperature SCR catalyst

Increased system efficiency

Higher application temperatures

Reduced CO₂ footprint

Cracking and N₂O catalyst

 NH_3 as a **feed gas** Ammonia **cracking** N_2O abetment **possible**

We can provide a **solution!**

Ammonia Slip Catalyst (ASC) can boost NO_x conversion, reduce NH₃ slip, compensate for non-uniform NH₃ distribution, and oxidize CO/VOCs

Non-uniform NH₃ distribution can result in localized ANRs

ANR <1 results in incomplete NO_x conversion

ANR >1 results in NH_3 slip

Non-uniform NH₃ distribution can be a result of:

Control system

Gas flow characteristics

Fluctuating load

Previous generation ASC exhibit excellent activity (High NH_3/CO conversion) but poor selectivity (NO_x production)

JM

Advanced ASC performs both oxidation function and SCR function (selective to N_2) simultaneously

Field installation: SCR+ASC system in Wyoming Pinedale Anticline

Project demonstrated that SCR+ASC could significantly reduce NO_x at low NH₃ slip

State of Wyoming implemented emissions limits

- NO_x: 90% conversion
- NH_3 slip ≤ 10 ppm

Up to 24 SCR+ASC systems operate at one time

Systems **installed 2008**, **still operating** and **achieving** emissions targets

Species	Permit	Measure	Measured (at catalyst outlet)			
		Engine 1	Engine 2	Engine 3		
% NO_{x} conversion	90% conversion	96.6	94.9	96.5		
ppm NH ₃ slip	≤ 10 ppm slip	0.4	1.0	0.6		

Each diesel engine equipped with SCR+ASC system, above engine

The data included herein were collected in a Johnson Matthey laboratory which has not been certified by the relevant authorities/agencies to perform emissions tes These are indicative data and do not represent a guarantee that the tested catalyst or emissions system will pass the relevant emissions legislation.

17

Future outlook

Ammonia slip catalyst

Increase of NH_3 slip

Overdosing at high temperature due to NH_3 oxidation

Requires alternative solutions

High temperature SCR catalyst

Increased system efficiency

Higher application temperatures

Reduced CO₂ footprint

Cracking and N₂O catalyst

 NH_3 as a **feed gas** Ammonia **cracking** N_2O abetment **possible**

We can provide a **solution!**

Next generation high temperature SCR catalyst (SCN7000):

developed for operation between 842°F-1202°F (450°C-650°C)

Advantages of Ex-HT-SCR (SCN7000):

High active mass of extruded products

High activity/stability

High geometrical surface area from high CPSI

Superior NO_x reduction activity High resistance to poison High NH₃-storage capability Low catalyst volume Low pressure drop Low thermal mass and weight

High NH₃-storage capacity and low pressure drop key to advancement

Advanced high temperature SCR catalyst (SCN7000) significantly outperforms standard V-Ti catalyst and washcoated catalysts

SCR activity

T=550°C (1022°F); NH₃/NO_x=1

Catalyst volume

T=550°C (1022°F); $NH_3/NO_x=1$

Pressure drop

T=550°C (1022°F); $NH_3/NO_x=1$

Superior SCR activity, reduced catalyst volume, and lower pressure drop aligned to tightened emission regulations of next generation power systems

JM

Field demonstration of high temperature SCR catalyst for thousands of hours to understand failure modes

Alternate application to SMR

Initial deactivation during start

Gradual steady-state over time

No increase in NH₃ oxidation

Laboratory testing provides limited insights

Cannot mimick flue gas deposits

Field testing critical

Summary

Selective catalytic reduction (SCR) catalysts used to reduce NO_x emissions

- · Formulation defined based on SCR design temperature
- Next generation SCR technology for high temperatures (842°F-1202°F) commercially available

Chromium (Cr) deposition is primary failure mode for steam methane reformer (SMR) applications

- Cr deposits primarily on the catalyst surface
- Results in increased ammonia (NH₃) oxidation
- · Careful design considerations required to meet lifetime requirements

Ammonia slip catalyst (ASC) allows continuous operation at higher NH₃/NO_x ratios (ANRs)

- Results in higher NO_x conversion while maintaining low NH₃ slip
- Improve plant performance by reducing back-end deposits (saves O&M costs for removal)
- Active for CO and/or VOC oxidation
- Can help compensate for non-ideal NH₃ distribution

JM

