

Johnson Matthey Inspiring science, enhancing life

Americas hydrogen and syngas technical training seminar

Shift Process Eddie De Amorim and Paulo Karavatakis

JM ammonia plant catalysts - specially designed for adding efficiency and reliability throughout flowsheet

Water gas shift basics

CO +	H_2O	\Leftrightarrow	CO_2	+ H ₂	+ Heat
------	--------	-------------------	--------	------------------	--------

$\Delta H = -41.1 \text{ kJ/mol}$

Reversible reaction

Equilibrium limited

Exothermic (forward reaction)

- Lower temperature
- Increased CO converted
- Increased hydrogen produced

Equimolar

- Pressure no effect
- Excess steam more hydrogen produced

Low temperature favors H₂ production

Agenda for today

01

02

03

HTS and LTS

Reduce CO levels and increase H_2 make CO + $H_2O \leftrightarrow CO_2 + H_2$ (exothermic)

JM

High temp shift catalyst Eddie De Amorim

Modern HTS catalysts require

High and stable activity High strength

© Johnson Matthey 2023

Same magnification

Low temp shift process Eddie De Amorim

HTS and LTS

Reduce CO levels and increase H₂ make $CO + H_2O \leftrightarrow CO_2 + H_2$ (exothermic)

10

LTS/MTS Catalyst features

Cu/Zn/Al formulation

High and well dispersed Cu content

Strong ZnO/alumina refractory phases

Inhibition of Cu sintering by the ZnO/alumina phases

For LTS, control of Cu activity plus special promoters increase selectivity

LTS

Benefit of activity vs poisons improvements

Poison resistance can often have more value than activity

LTS poisoning

JM

LTS poisoning profile 240 464 455 235 T (°C) 446 230 Bed temperature, 225 437 220 428 215 419 210 410 205 401 200 392 10 50 60 20 30 40 0 Catalyst charged depth, V (m3) 5 yr 0 yr 3 yr 2 yr 4 yr l yr

Useful life **largely governed** by poisoning

No reaction occurs in the **poisoned volume**

(J°)

temperature,

Bed

The **poisoned volume** extends deeper into the bed over time

Poisons retained by the **catalyst prevent** poisoning further down the bed

13

Two very different catalyst deactivators

Two very different catalyst poisons

S reacts with Cu surfaces forming **CuS**

S surface mobile

ZnS thermodynamically stable

Bulk sulphide ZnS the stable endpoint within catalyst

Sulphur poisoning

Copper

Sulfur

Chlorides strongly promotes sintering

CI forms CuCl

CuCl mobile if wetted so poisons can be washed deep into bed

CuCl has **low melting point** promotes sintering

Chlorides strongly promotes sintering

Tamman temperature, describes on-set of atomic particle migration

 $T_{tamman} = \frac{1}{2} T_{melting point} [^{\circ}K]$

Particle migration

Particle migration

Particle collision

Particle merging

LTS **T**_{tamman} Cu 200°C 405°C CuCl₂ 200°C 174°C CuCl 200°C **79°C** CuO 200°C 527°C 851°C ZnO 200°C ZnCl₂ 200°C **9°C**

18

Chloride poisoning

Competitor solution

Speciality guard

Top 15% of bed not used for shift reaction

Reduced LTS activity of bed

Designed for Cl retention

Low S retention

Additives required to give **materials strength**

JM solution

Entire bed available for shift reaction

Maximised activity of bed

Equivalent Cl retention

Very high S retention

Strength inherent in product

KATALCO 83-3 - self guarding for S and Cl

Analysis of pellets

% weight in spent catalyst

PURASPEC 2272

More protection longer LTS life; less risk from transient wetting

© Johnson Matthey 2023 21

2272

8

6 year basis

80%

100%

10

Pressure drop considerations in operation Maximise return on asset; pressure drop is a restriction

Increase plant rate is as much as possible

1

Push until **rate limited** by relief valve or compressor power

2

Without a revamp catalyst p.d. is only variable and is easy to measure

3

Therefore plant is always **limited by** catalyst p.d.

4

Pressure drop – catalyst important

Range of tools and types to optimise

Catalysts must
satisfy operator
needs

Different sizes, catalyst shapes and loading options – available to reduce catalyst p.d. Design tools for value adding solutions

Catalyst p.d	Flowrate	
100%	100%	
50%	104%	
0%	109%	

Assuming air compressor limit, matching 9bar p.d. from primary to Syngas machine suction

Catalyst p.d. characteristics

Start as low as possible, increase as little as possible (stay low)

JM

 $\mathbf{\nabla}$

Pressure drop across the front end of flowsheet

JM

		Exchangers, piping etc. 75%	Purification	Reforming 15%	HTS 4%	LTS 4%	Methanation 2%	
Pressure (Bara) 0 0 0 0 0	55 Inlet gas pressure	-15	-0.2	-3	-0.75	-0.75	- 0.3 Synga:	35 bar s machine suction

© Johnson Matthey 2023 26

Shift catalyst - pressure drop case studies

Increased or lost profitability impacts

Increased profitability

Good catalyst performance (assurance)

Positive impact: All of the time

Lost profitability

Poor catalyst performance (risk)

Negative impact: Infrequent event

STREAMLINE solution to lower pressure drop

Engineered loading of supports in reactor; case studies in both HTS and LTS

Shift catalyst – pressure drop case study HTS

HTS – plant scale 3,300 tpd of ammonia, case at \$1000/MT_{NH₃}

JM

Increased

profitability

Good catalyst

performance

(assurance)

Positive

impact:

All of

the time

Shift catalyst – pressure drop case study HTS

HTS – plant scale 3,300 tpd of ammonia between $300/MT_{NH_3}$ and $1000/MT_{NH_3}$

Even **relatively small p.d.** differences allow strong returns due to combination of the **plant scale** and **ammonia production margin**

p.d. saving can **increase value** production

 Increased
 Positive

 profitability
 Good catalyst

 performance
 All of

 the time

Shift catalyst – pressure drop case study LTS

LTS – plant scale 1,200 tpd; considering product at $300/MT_{NH3}$

 profitability
 Negative impact:

 Poor catalyst performance
 Infrequent event

Lost

 Competitive LTS charge
 4 bar

 Purchase cost saving
 4 bar

Performance issues

- LTS pressure drop double expected SOR @ 1bar
- p.d. increased dramatically through life to **3.5bar**
- Caused rate restriction, changed at **18 months**
- Incident cost, estimated at >\$10M

Why?

- Catalyst structural issue in reduction?
- Chloride suggested as contributor??

Poor pellet integrity results in fused pellets and reduced voidage

Water gas shift

LTS catalyst – highly active, strong robust catalyst

KATALCO 83-3X

Robust LTS - optimum catalyst structure

'Good skeleton' of Zn-Al refractory crystals

Supports Cu, provides intrinsic strength

Relative strength after simulated condensing incident HGS (KgF) 12 After reduction After condensing steam 10 8 6 4 2 0 KATALCO 83-3X Competitor 1 Competitor 2 50 nm 50 nm 50 nm Strength, Al, Zn

HTS challenging duty

Pressure drop solutions in WGS

Leading water gas shift solutions

JM

Summary

JM

Trusted solutions for the ammonia industry

JM

Shaped HTS for lowest PD & highest strength

Leading LTS stays strong lowest pressure drop

www.matthey.com

Johnson Matthey

JM

PURASPEC 2272 patented revolutionary low shift protection

JM

Reliable ammonia production has never been more important

