PSA DEBOTTLENECKING GETTING THE MOST OUT OF YOUR ASSETS

ARPIT SHAH PROJECT DEVELOPMENT MANAGER, UPT HYDROGEN

neywell UOP

23 October 2024

PRESENTATION OUTLINE

Hydrogen needs of today's refinery

PSA unit components

Increase capacity/ performance of your PSA unit

- UOP High Performance Adsorbents
- Modified PSA Cycles
- PSA Expansions (add vessels)
- Lower Tail Gas Pressure

Case Studies

New Feed Gas Composition & Product Specifications Reliability enhancement

íō.

WHY WORRY ABOUT HYDROGEN?

The Obvious Answers

- Demand for low-sulfur fuels
- Heavier crude oil supply
- More conversion

- Lower aromatic gasoline
- H₂ for Fuel Cells

- Need to reduce operating costs
- Minimize CO₂ emissions
 - One ton of H_2 requires 3.5 to 4 tons HC equals to 8 to 12 tons of CO_2

Typical Hydrocracker Operating Costs

Tight Hydrogen Balance Can Constrain Operations

SOURCES OF H₂ IN THE REFINERY

Economics of a PSA Unit:

- Catalytic Reforming
- Hydrocracker vents/purges
- Hydrotreater vents
- FCC off-gas/fuel gases
- Steam Methane Reforming
- Petrochemical integration
- Ethylene cracker
- Aromatics plant

Pressure and H₂ concentration are key

SOLUTIONS TO INCREASE CAPACITY OF YOUR PSA

Relative Capacity Increase

Any of the above options can be combined

REVAMP OPTIONS FOR CAPACITY INCREASE

Add more vessels if limit of the cycle time is reached

CASE STUDY 1 – HIGH PERFORMANCE ADSORBENT

Comparison of Two Identical PSA Units Loaded with Different Adsorbents

- With high-performance adsorbents, PSA1 takes <u>less</u> feed gas to make practically the same hydrogen production
- PSA2 takes <u>more</u> feed to make the same amount of product, making more tail gas

This results in a 2% increase in H₂ recovery. An additional capacity increase was possible in conjunction with this change

SOLUTION 1 HIGH-PERFORMANCE ADSORBENTS WITH CASE STUDY

PERFORMANCE IMPROVEMENT				
	Standard Adsorbents	High Performance Adsorbents		
Hydrogen Recovery	Base	+2%		
Capacity	Base	+15%		

Steam reformer applications (SMR)

- Higher recovery/capacity
- Improved CO / N₂ removal
- Tighter H₂ Product specifications

Refinery off-gas applications (ROG)

Higher recovery/capacity

Mandatory Vessel inspections

Check if an adsorbent upgrade is possible

SOLUTION 2 MODIFIED CYCLES TO DEBOTTLENECK PSA UNITS

- Modified Internal Process Steps
- Shorter Adsorption Times
- Trade Recovery for Higher Capacity
- May Require Skid/Valve Modifications
- Switchovers to be Checked

CASE STUDY 2 CAPACITY INCREASE: FASTER CYCLE BY PROGRAMMING UPGRADE

Revamp available for older PSA designs

CASE STUDY 3 CAPACITY INCREASE: MODIFIED CYCLE

Trade recovery for capacity

CAPACITY INCREASE TRADE RECOVERY FOR CAPACITY WITH CASE STUDY

CASE STUDY 4 – TRADE CAPACITY FOR RECOVERY

Flexible: Recovery or Capacity

SOLUTION 3 MORE VESSELS (MORE CAPACITY) WITH CASE STUDIES

- Modification of *internal* process steps
- Reduction of adsorption time
- Split regeneration over more adsorbers

Loading = Feed flow rate x Subcycle Time

- Hydraulics must be verified
 - Line velocities
 - Valve sizing
 - Bed lifting & flow distribution
 - Switchover mode capacity

CASE STUDY 5 – MORE VESSELS

Steam Reformer PSA Revamp

	Original Design	First Revamp
PSA Type	5 Bed	6 Bed
Feed	14,000 Nm³/h	17,400 Nm³/h
Product	8,900 Nm³/h	10,700 Nm³/h
	10 ppm CO	10 ppm CO
Off-Gas	0.35 bar(g)	0.35 bar(g)
Recovery	83%	85%

CASE STUDY 5 – MORE VESSELS & HP ADSORBENT

Steam Reformer PSA Revamp

	Original Design	Second Revamp
PSA Type	6 Bed	6 Bed
Feed	17,400 Nm3/h	<mark>19,400 Nm3/</mark> h
Product	10,700 Nm3/h	<mark>12,500</mark> Nm3/h
	10 ppm CO	10 ppm CO
Off-Gas	0.35 bar(g)	0.35 bar(g)
Recovery	85%	86%

Add HP adsorbents

CASE STUDY 6: CAPACITY EXPANSION OF LARGE PSA UNIT

Original Design (2006)

- 12-bed PSA Unit
- SMR feed
- High-Performance Adsorbents
- 90% H₂ Recovery
- 150,000 Nm³/h feed gas
- 99,000 Nm³/h H₂ product
- Programmed in customer's DCS

Revamp Requirements (2012)

- SMR revamp
- 20% capacity increase
- Maintain 90% H2 Recovery
- Maintain High-Performance Adsorbents

Revamp Options

Option 1: 12-bed, 20% faster cycles

- · Valve limitations on PP valves
- Unable to complete all EQ steps
- Unable to maintain 90% recovery
- NOT POSSIBLE

Option 2: 14-bed, optimized cycle

- More time available for adsorption and purge
- Optimize pressure profile for 14-bed operation to maintain 90% recovery
- New 14-bed PSA cycle
- Addition of 2 adsorbers + skid + adsorbent + I/O cards
- Keep existing adsorbent in 12 beds
- New PSA Sequence to be programmed in DCS

SOLUTION 4 – LOWER TAIL GAS PRESSURE

Increased Capacity (SMR)

• 0.35 bar(g) tail gas, low-pressure burners only small improvements are possible

Other Applications (Ethylene & Refinery Off-Gas)

- Install tail gas compressor to increase recovery and capacity
- From 4 bar(g) to 0.35 bar(g) expect increase of 12-15% recovery and 25-70% capacity

CONCLUSION

Revamping is the most cost-effective way to get the most out of your asset

THANK YOU

UOP