CARBON CAPTURE SOLUTIONS HONEYWELLUOP

dist in

MARK SCHOTT

DIRECTOR MARKET DEVELOPMENT, SUSTAINABILITY HONEYWELL UOP – SUSTAINABLE TECHNOLOGY SOLUTIONS

641 C

Honeywell UOP

29th Oct 2024

FORWARD LOOKING STATEMENTS

This presentation contains certain statements that may be deemed "forward-looking statements" within the meaning of Section 21E of the Securities Exchange Act of 1934. All statements, other than statements of historical fact, that address activities, events or developments that we or our management intends, expects, projects, believes or anticipates will or may occur in the future are forward-looking statements. Such statements are based upon certain assumptions and assessments made by our management in light of their experience and their perception of historical trends, current economic and industry conditions, expected future developments and other factors they believe to be appropriate. The forward-looking statements included in this presentation are also subject to a number of material risks and uncertainties, including but not limited to economic, competitive, governmental, technological, and COVID-19 public health factors affecting our operations, markets, products, services and prices. Such forward-looking statements are not guarantees of future performance, and actual results, and other developments, including the potential impact of the COVID-19 pandemic, and business decisions may differ from those envisaged by such forward-looking statements. Any forward-looking plans described herein are not final and may be modified or abandoned at any time. We identify the principal risks and uncertainties that affect our performance in our Form 10-K and other filings with the Securities and Exchange Commission.

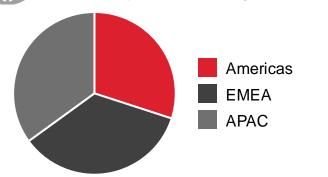
AGENDA

- I. Honeywell UOP Overview
- II. Carbon Capture Technology Pathways
- III. Advanced Solvent Carbon Capture (ASCC)
- **IV.** Cryogenic Carbon Capture + PSA
- V. Low Carbon H₂ ATR Solutions
- VI. Low Carbon H₂ SMR Retrofit Solutions
- **VII.** Blue Hydrogen Case Studies

VIII. Conclusions

IX. Questions

100+ Years of Global Expertise and Leading Technology Development


UOP TECHNOLOGY POWERS

- 90% of biodegradable detergents
- 70% of the world's polyester
- 60% of the world's gasoline
- 60% of the world's on-purpose propylene
- 60% of the world's paraxylene
- 50% of the world's renewable fuels
- 40% of LNG processed
- 40MT tons of captured CO₂ (as of June 2024)

GLOBAL REACH

Diversified regional presence that can effectively react to changes in demand

NEW TECHNOLOGIES

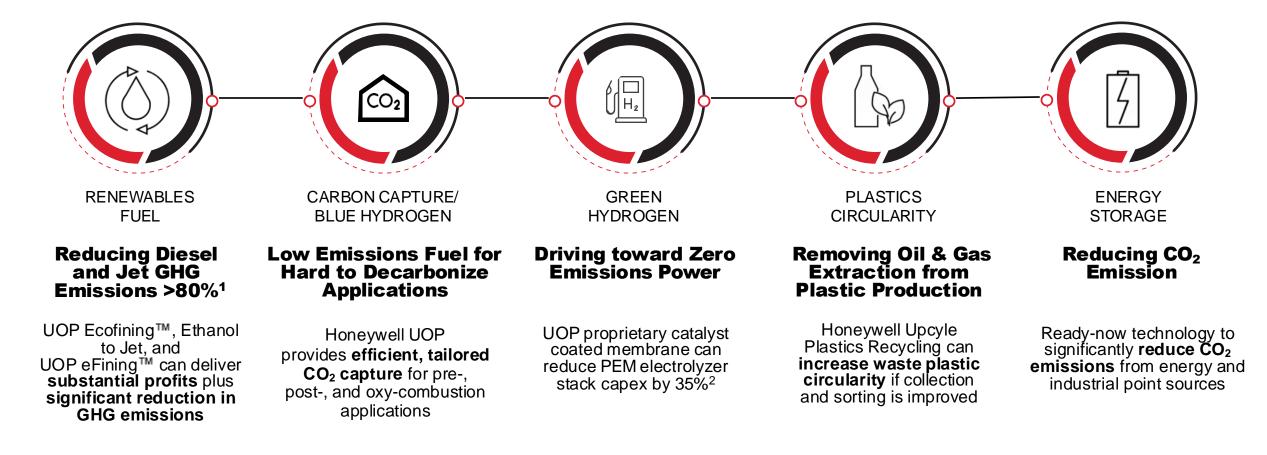
Honeywell UOP creates new technologies that convert oil and natural gas into transportation fuels, energy, and petrochemicals

C	

EXPERTISE

Broadest range of downstream refining and petrochemical technologies; leading process technology licensor

2,000 Engineers and scientists



LARGES process licensing organization in the world **31**out of **36** refining technologies in use today were developed by

SUSTAINABLE TECHNOLOGY SOLUTIONS

A New Business Unit for Honeywell

Committed to Commercialization of Sustainable Technologies

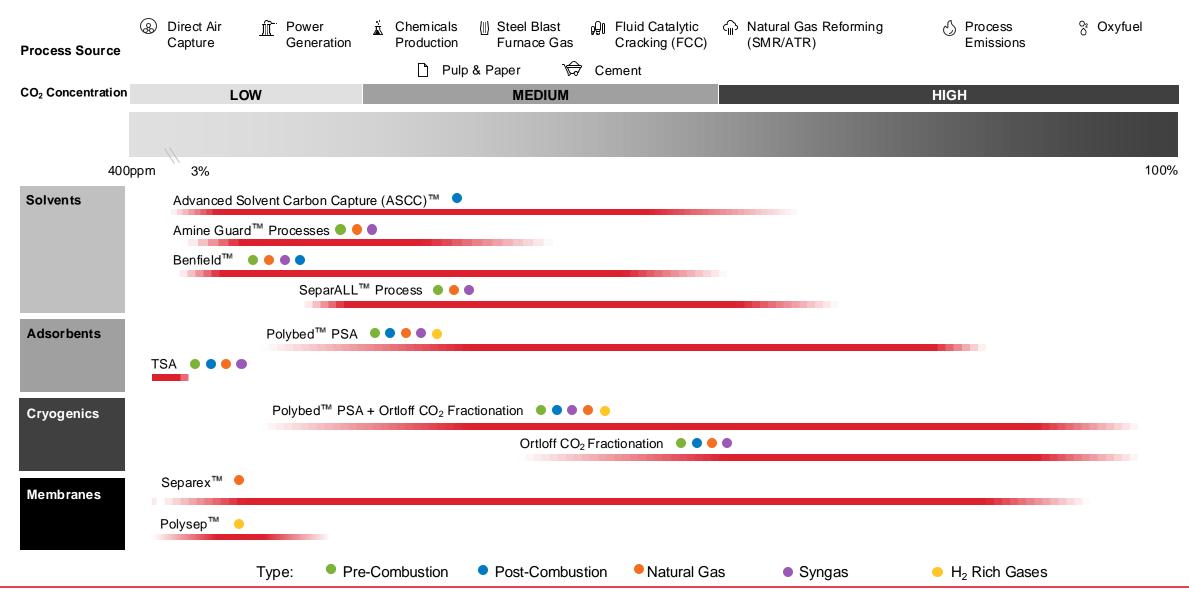
1 Greenhouse gas emission savings calculations based on California Air Resources Board methodologies

2. based on a PEM water electrolysis system using renewable power to produce 2,220 MT H2/y with 8,760 operating hours/year using UOP internal lab test results of UOP's HiFlux-114P PEM CCM and a commercially available PEM CCM

BUILDING ON A STRONG CORE FOUNDATION

UOP Core Foundations Enabling the Future of Sustainable Energy Technologies UOP technology enhanced by services and digital offerings MTO LD Parex **IOS-NEP** Parex Oleflex Petrochemicals UOP Russell Gas pretreat Membranes Modular LNG **Gas & Separations** Core Refining HCK to Naphtha **ISOALKY** Technology Sustainable Technologies 1914 Early-1900s Mid-Late-1900s Dubbs Alkylation Unicracking Thermal Isomerization Zeolites & Cracking • FCC Adsorbents 2000s Platforming CCR tech • Uniflex Carbon Capture UpCycle Green H₂ Ecofining PSA Polybed Hydrotreating

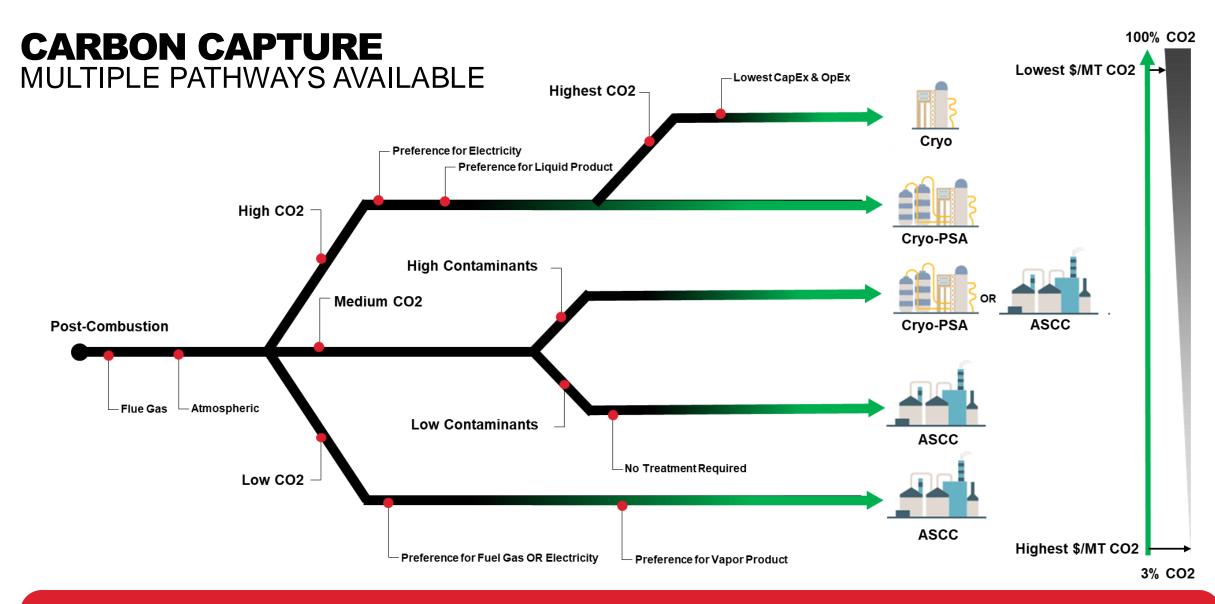
Enabling the Energy Transition with end-to-end energy technology portfolio



CARBON CAPTURE TECHNOLOGY PATHWAYS

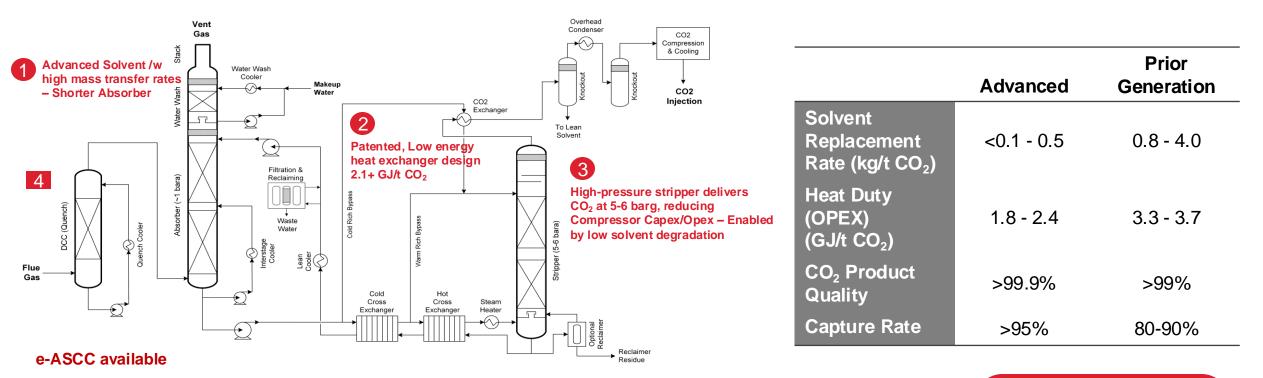
The the first

HONEYWELL CO2 SOLUTIONS


CARBON CAPTURE REFERENCES

	Existing Units Capture Ready & Capturing					
#	Facility	Technology	Installed CO₂ Capture Capacity (kMTA)			
1	FPSO	Membranes	26,000			
2	Gas Processing Plant	Cryo-Selexol	8,400			
3	Fertilizer Plant	Selexol	1,000			
4	Power Plant Indiana	Selexol	1,500			
5	Gas processing plants	AGFS, Selexol, Benfield	>6Bscfd of installed capacity transitioning to CO ₂ Capture plants			
6	Bulk CO ₂ Removal Plants	Separex	>3Bscfd of Bulk CO ₂ removal capturing & capture ready			
	Re	ecent Awards				
1	ExxonMobil Baytown	Cryo-PSA	7,000			
2	Wabash Valley Resources	Cryo-PSA	1,650			
3	Duke DOE OECD Selection	ASCC	3,600			
4	Ecopetrol, FCC	ASCC	75			
5	SMR Flue Gas	ASCC	250			
6	CCGT Demo	ASCC	10			
7	Confidential	Cryo-PSA	6,700			
8	Calpine Pastoria	ASCC	Confidential			
9	Confidential	ASCC	100			

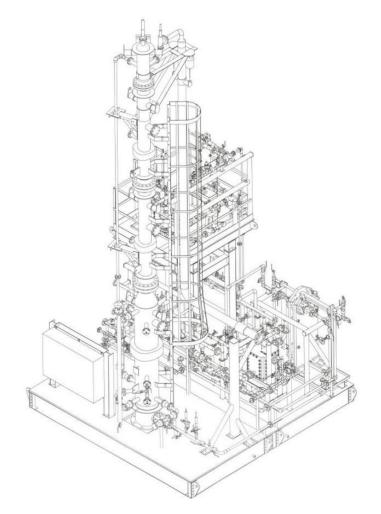
Capturing >15 Mt per year with capacity to capture more


Sources: ExxonMobil to Deploy Honeywell Carbon Capture Technology, Honeywell Technology Enables Large U.S. Carbon Capture And Storage Project, OCED_CCEEEDs_AwardeeEactSheet_Duke_1.5.2024.pdf (energy gov), Ecopetrol selects: Honeywell technology for advanced solvent carbon capture study (digitalrefining.com), https://www.energy.gov/fecm/project-selections-foa-2614-carbon-management-round-3

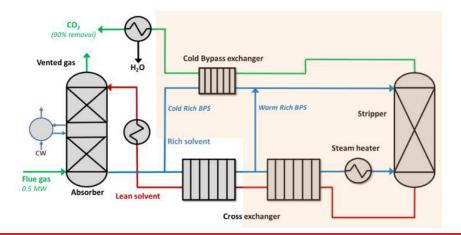
Enabling carbon capture with multiple technology portfolio

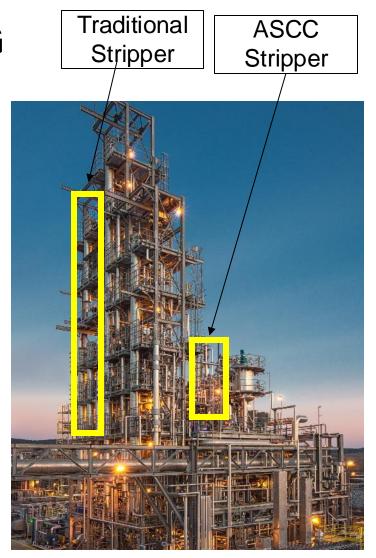
ADVANCED SOLVENT CARBON CAPTURE (ASCC)

HONEYWELL'S NEXT GEN SOLVENT TECH ADVANCED SOLVENT CARBON CAPTURE (ASCC)

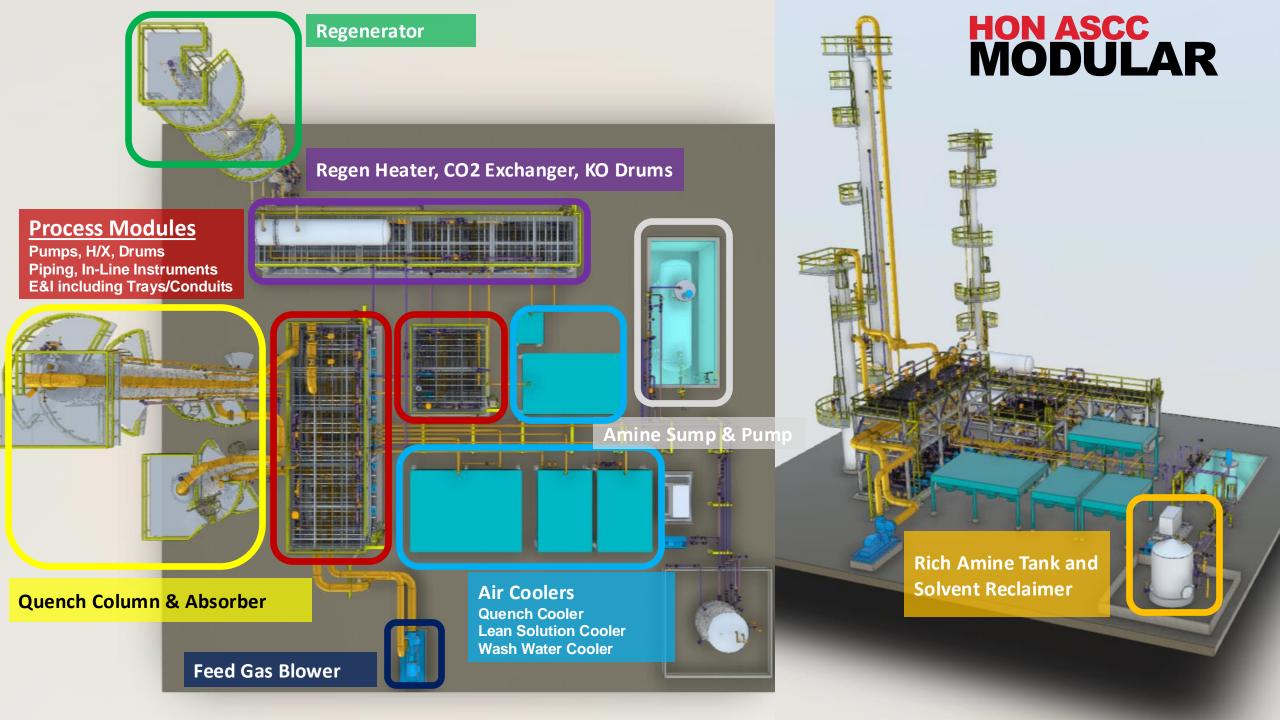


Honeywell's ASCC is more efficient due to the high transfer rate of the solvent, lower energy needs, and low solvent degradation


- 1 Higher mass transfer rate of solvent leads to capex savings from shorter absorber tower
- 2 Efficient heat exchanger integration leads to lower opex for regenerating solvent
- **3** Higher pressure regenerator/stripper means reduction in capex and opex for CO₂ compression train
- 4 Potential Elimination of DCC


Current Solvent Gen reduces cost of capture between \$15 - \$20/ton CO₂

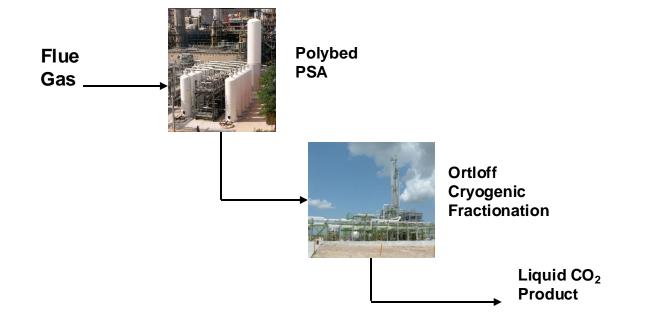
ASCC EQUIPMENT FOR NCCC TESTING



- NCCC demonstration utilizes existing absorber tower
- Purpose built skid with advanced flash stripper and heat exchange network installed at NCCC
- Verification of energy consumption and high pressure stripping
- Same solvent utilized for all three campaigns

Purpose Built Skid to Demonstrate Energy and Stripping Performance

HONEYWELL RECENT CARBON CAPTURE EXPERIENCE


Year	Customer	Technology	HONs Role	Status	Industry	CO ₂ Concentration	Annual CO ₂ Capture, MMtpa	CO ₂ Capture Rate
2021	Wabash	E&P + Licensor H ₂ Purification + CO ₂ Capture	CO₂ Frac	FEED complete	Hydrogen	>20%	1600	>95%
2022	PTTEP - Co2 Capture	E&P + Licensor Membrane System	Membrane	Start Up imminent	Natural Gas	>60%	1400	>95%
2023	XOM Baytown	E&P + Licensor H2 Purification + CO₂ Capture	CO₂ Frac	In FEED	Hydrogen	>20%	7000	>99%
2023	Mega Scale Low Carbon NH₃ Production	E&P + Licensor H2 Purification + CO₂ Capture	CO₂ Frac	In FEED	Ammonia	>20%	7360	>99%
2023	Duke	E&P + Licensor CO ₂ Capture	ASCC	FEED Commencing	Coal Power	5.5%	3600	>95%
2022	Consol Energy	Licensor CO ₂ Capture	ASCC	SOLD Pre-FEED complete	Coal Power	>9%	3100	>95%
2023	SK E&S	E&P Modular CO ₂ Capture	ASCC	SOLD FEED	NGCC Power	4.2%	3	>95%
2023	Honeywell Geismar	E&P Modular CO ₂ Capture	ASCC	FEED Commencing	Boiler Flue Gas	9.2%	85	>95%
2023	NAM - California	E&P + Licensor CO ₂ Capture	ASCC	FEED Commencing	H2 SMR Flue	14%	245	>95%
2024	Calpine Energy	E&P + Licensor CO ₂ Capture	ASCC	FEED Commencing	NGCC Power	4.1%	1750	>95%
2024	Crescent (Entergy)	E&P + Licensor CO ₂ Capture	ASCC	FEED Commencing	NGCC Power	4.2%	3000	>95%

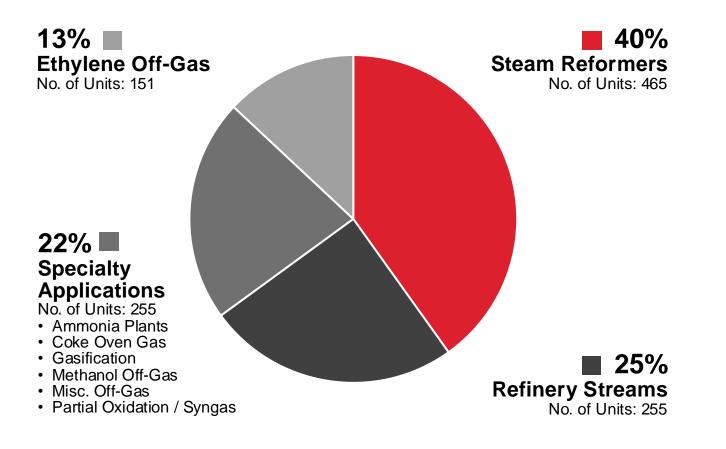
MYTHBUSTING KEY RISKS FOR PROJECT SUCCESS

ТОРІС	МҮТН	REALITY	COMMENTARY
CAPTURE EFFICIENCY	 Amine tech will fail to achieve 95% capture rate for low-concentration CO₂ 	 Amine technology can achieve >95% capture rates 	 Capture rate depends largely on contact area with the solvent; larger absorber increases capture rate
POST-COMBUSTION CARBON CAPTURE	 Solvent tech carbon capture is not compatible with flue gas from industrial sources 	 Amine tech is well suited to capturing CO₂ off industrial flue gas; Several DOE FEEDs ongoing for deploying technology 	 Cleaner burning fuel decreases contaminants; key is reducing NOx exposure
LARGE SCALE APPLICATION	 Success with small scale pilot testing does not mean success at large industrial scales 	 Amine tech has been demonstrated at commercial scale for CC in the power sector 	 Amine tech is deployed at commercial scale in other industries
BUILD COSTS	 Cost to build a project this large is not reasonably estimable without comparable projects 	 EPCs are familiar with how to estimate & price equipment 	 Required pieces of equipment are not inherently different from pieces used in other industries; fabrication costs are reasonably understood
OPERATING COSTS	 It is impossible to know the true cost to operate this technology at scale, and ongoing maintenance risks are high 	 Amine units have been deployed in industry for >70years. Operators are familiar with these units and the major equipment within the unit. 	 As demonstrated from our existing references, amine units at similar capacity have been deployed and therefore the cost of utilities can be estimated based on current equipment deployment.

CRYOGENIC CARBON CAPTURE + PSA

CRYOGENIC CO2 CAPTURE

Experience


- 1150+ PSAs in 9 different applications
- 418 cryogenic references in 5 different applications

- Carbon capture for higher CO₂ concentrations – 15% +
- Pressure Swing Adsorption (PSA) used for flue gas enrichment
- Proprietary CO₂ fractionation process integrated to deliver it in transportable form (liquid)
- High purity CO₂ specification (>99.9%)¹ achievable along with high recovery (>95%)²
- All electrically powered

Energy Requirements Cryogenic Lower as CO₂ Concentration Goes Up

- 1. Based on Honeywell UOP PSASIM tool results for hydrogen purity level.
- 2. Based on internal study for cement flue gas.

HYDROGEN PSA APPLICATIONS & EXPERIENCE

>1,150 Polybed PSA units supplied by Honeywell UOP worldwide

CYRO: COMMERCIAL REFERENCES

Service	Highest Feed Flow, MMSCFD	# of Units
NGL Recovery	1,575	342
Refinery Off Gas	45	12
LPG Recovery	1450	49
LNG Production	10	10
CO ₂ Capture	400	5
TOTAL		418

Service	Location	Captured CO ₂ , kMTPA	Engineering Completion
CO ₂ FRAC	USA	9 400	Commissioned
CO ₂ FRAC	USA	8,400	Commissioned
CO ₂ FRAC	USA	1,650	2024
CO ₂ FRAC	USA	7,000	2024
CO ₂ FRAC	USA	6,700	2024

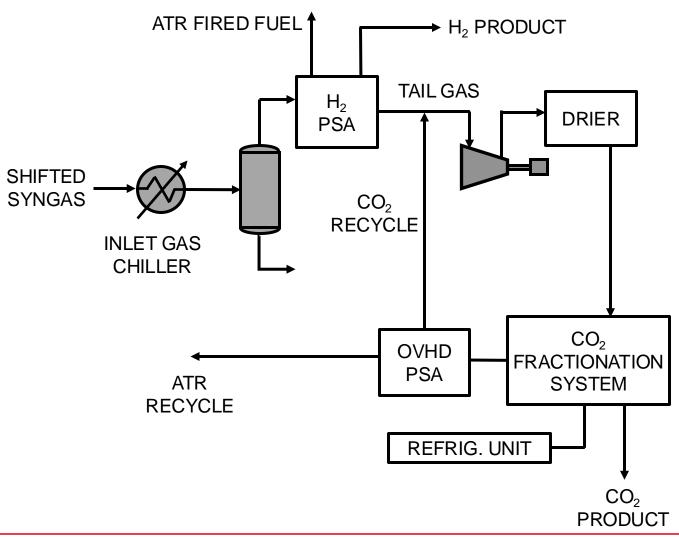
Total UOP Experience: 418 commercial references with unit capacity up to 1575 MMSCFD

5 units in CO₂ capture service

Large scale experience in liquids recovery using fractionation technology

CO₂ FRACTIONATION UNIT | SANDRIDGE, TX USA

Natural Gas Processing Plant with CO_2 for Enhanced Oil Recovery Capacity: 675 MMSCFD with 65% CO_2 Annual CO_2 Capture – 8.4 MTPA



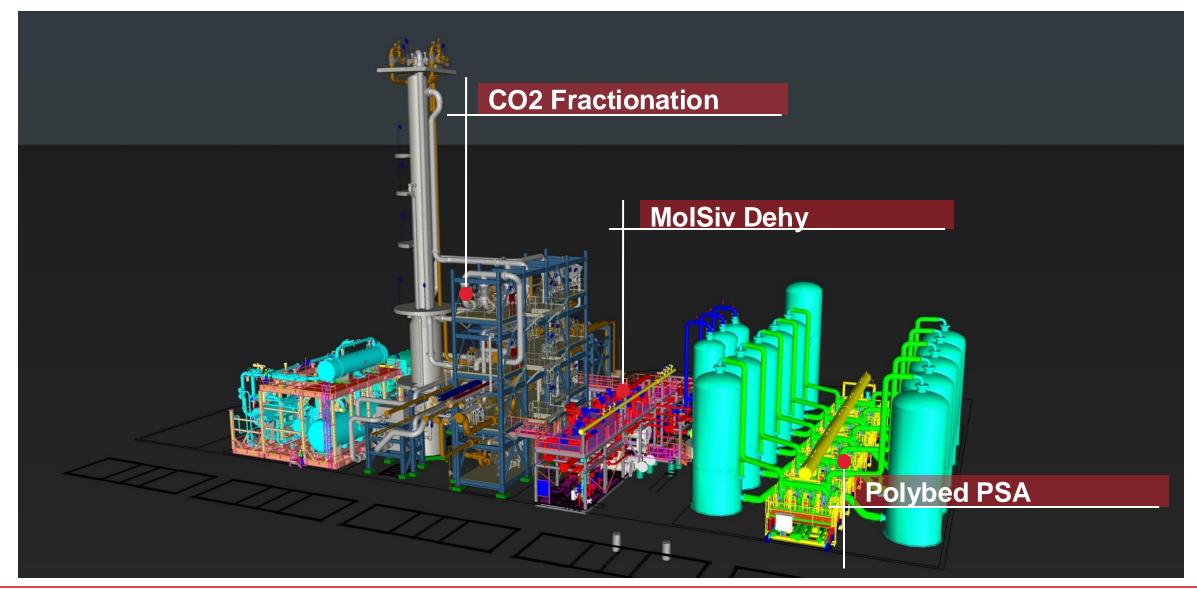
LOW CARBON H₂ – ATR SOLUTIONS

1¹¹40

ATR RECYCLE LOW CARBON INTENSITY

UOP CO₂ FRACTIONATION SYSTEM

Off-gas Recycle to ATR Feed

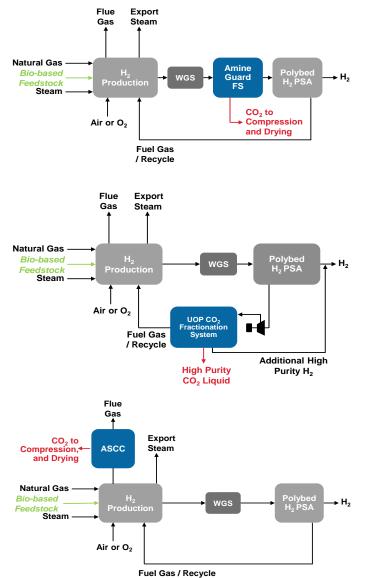

- Low Carbon Emissions
- Higher Feedstock Efficiency

Scope 1 Emissions: <0.1 kg CO₂ / kg H₂

Carbon-free fuel gas stream produced in H₂ PSA

- Selective rejection of inerts
- Approximately 30 psi(g)
- Approximately 90 mol% H₂ and 10% N₂ + Argon

CO₂ FRACTIONATION UNIT


LOW CARBON H2 – SMR RETROFIT SOLUTIONS

ENERGY

STORAGE

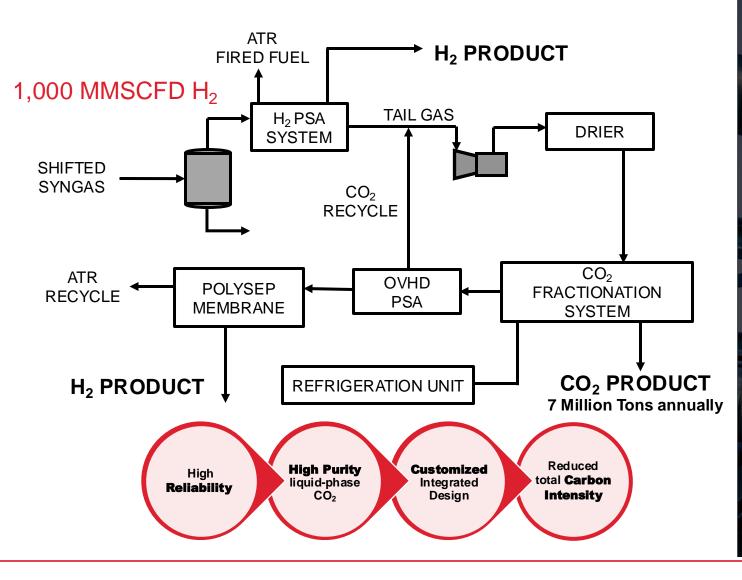
第三

SMR CARBON CAPTURE OPTIONS

- Extensive Experience
- Lower Capex
- High Steam Usage
- Moderate Cost of Capture
- Requires PSA Revamp
- Lowers Operational Flexibility
- Significant Experience
- Lower Capex
- No Steam Required
- Lowest Cost of Capture (w/H2 credit)
- Bolt on, no PSA Revamp required
- No impact on Operational Flexibility
- First Commercial Commitments
- Moderate Capex
- Lower or No Steam Required (e-ASCC)
- Moderate Cost of Capture
- Bolt on, no PSA Revamp required
- No impact on Operational Flexibility

BLUE HYDROGEN CASE STUDIES

• . • •


· . .

HYDROGEN ENERGY STORAGE

E IF SHED FIR MI

EXXONMOBIL CASE STUDY

UOP H₂ PURIFICATION AND CO₂ FRACTIONATION

CO₂ Fractionation System

- Enables the capture of about 7 million tons of CO₂ annually, equivalent to the emission of 1.5 millions of automobiles for one year¹
- 98% CO₂ emissions captured across Low-Carbon Hydrogen production facility²

H₂ Purification

- High Purity H₂ produced from Pressure Swing Adsorption and Polysep[™] Membrane technologies
- ExxonMobil's H₂ production project will enable up to 30% of scope 1 and scope 2 emissions reduced at their Baytown facility³

¹ Based on the EPA's GHG equivalency calculator comparing nearly 7 million tons of CO2 per year with gasolinepowered passenger vehicles on the road.

 2 CO₂ equivalent emissions is a calculated value based on the combined carbon compounds emitted from the Hydrogen production and Carbon Capture equipment plus the combined carbon compounds in the H2 product.

³ Based on press release issued Feb 15, 2023, announcing HON H2 tech in Exxon Baytown facility. Link

CONCLUSION

1

Honeywell UOP has a portfolio of innovative carbon capture technologies, backed-up by decades of experience that offers industrial customers the opportunity to significantly reduce their emissions using proven technologies, including solvents and cryogenics.

3

4

For low carbon H2, UOP's cryogenic technology using the ATR solution is ideal solution (incl SMR retrofits)

- Achieves extremely low process carbon intensity of <0.1 kg $CO_2/kg H_2$
- All electric design allows potential for Scope 2 emissions reduction over time
- H₂ product is at 99.9+% purity
- Liquid CO₂ product stream is inherent to process and is ready for storage and shipping
- Reliability: H₂ product supply can be delivered even when CO₂ capture system is shutdown
- Equipment count of UOP Cryo fractionation system is about 2/3 that of an amine system
- UOP cryogenic + PSA technologies demonstrating commercial viability
- ExxonMobil Baytown blue H₂ project capturing 7 M mt/yr
- Wabash Valley Resources B-NH3 project capturing 1.6 M mt/yr
- Confidential B-NH3 project capturing 6.7M mt/yr
- Initial applications of ASCC for SMR flue gas being contracted

The technologies to enable emission reduction are available today

THANK YOU

