### HYDROGEN REFORMER BURNER BASICS

### JM H2 & SYNGAS TECHNICAL TRAINING SEMINAR

PATRICK ALLEN PRODUCT LINE MANAGER - BURNERS

6 November 2024

Honeywell | Callidus<sup>®</sup> UOP | Technologies



I. Fundamentals & Design Considerations

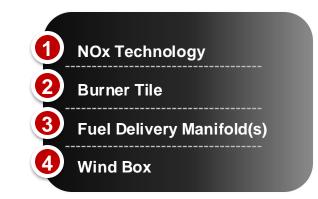
**II.** Installation, Operation & Maintenance

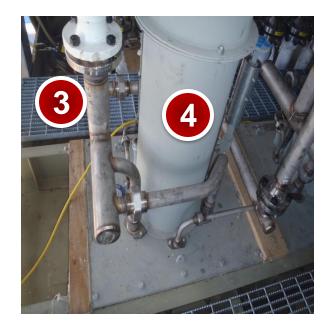
**III.** Technical Solutions for Revamps & Process Improvements

**IV.** Callidus Ultra Blue System Burners




### **FUNDAMENTALS & DESIGN CONSIDERATIONS**



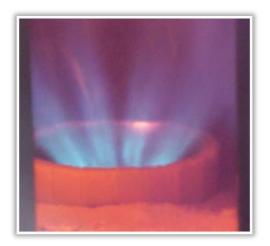


Honeywell Confidential - ©2023 by Honeywell International Inc. All rights reserved.

### **MECHANICAL COMPONENTS OF REFORMER BURNERS**



Up-Fired Burner






Down-Fired Burner



### **COMBUSTION BASICS**

- A chemical reaction between fuel and oxygen producing heat
- Typical Fuel: Natural Gas (NG), Refinery Fuel Gas (RFG), PSA Tail Gas and Syn Gas
- Oxidant: Ambient Air, Preheated Air or Turbine Exhaust Gas (TEG)



$$C_xH_y + zO_2 + 3.71zN_2 \rightarrow xCO_2 + \frac{y}{2}H_2O + 3.71zN_2$$

### **Undesirable Products of Combustion**

1. Thermal NO<sub>x</sub> – Formed as a result of "high" temperature combustion

 $N_2$  + Heat  $\rightarrow 2N$ N + O<sub>2</sub>  $\rightarrow$  NO + O

2. Fuel NO<sub>x</sub> – Formed from the oxidation of a nitrogen bearing compound

 $4NH_3 + 5O_2 \rightarrow 4NO + 6H_2O$ 



### **NO<sub>X</sub> FORMATION**



Factors that Affect Thermal NO<sub>X</sub> Formation

- Bridgewall Temperature Typical Range of 1800 2000°F
- Combustion Air Temperature Ambient ~800°F
- Fuel Composition 100% NG to 20% NG / 80% PSA Tail Gas
- Peak Flame Temperature 2800 3900°F

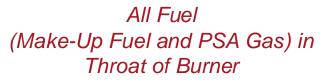
#### Combustion Excess Air Levels above stoichiometry impact NO<sub>x</sub> Typical Excess O<sub>X</sub> Operating Levels Range from 1% - 3%

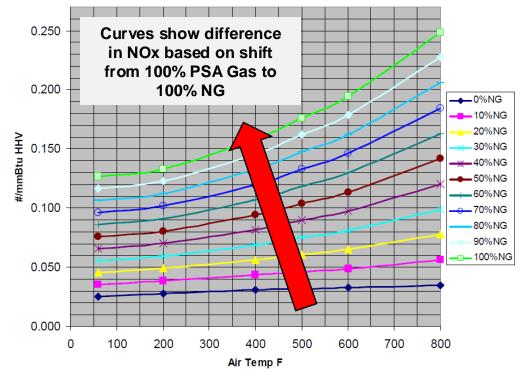
### **HOW TO REDUCE NO<sub>x</sub> FORMATION**

Honeywell Callidus® UOP Technologies

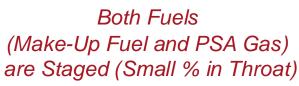
**Old Technology Produces Short Compact Flame With HIGH Peak Flame Temperatures** New Technology Produces Longer Flames With Lower Peak Flame Temperatures The *actual* flame temperature is the temperature

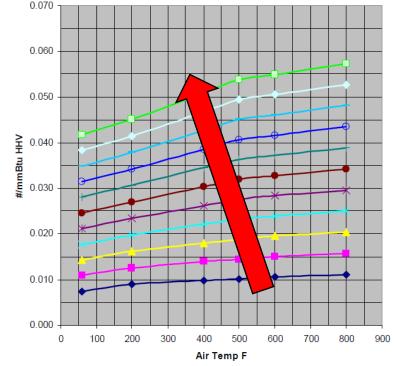
NOTE: Concept applies to all fired configurations


- Up-fired
- Down-fired
- Radiant wall


of the combustion products with heat transfer away from the products.

#### **Reduce Overall Emissions by Controlling the Combustion Process**


### TECHNICAL SOLUTIONS TO LOWER NO<sub>X</sub> EMISSIONS


#### **Conventional Burner**





#### Ultra-Low NO<sub>x</sub> Burner





#### Advanced Burner Designs Reduce NO<sub>x</sub> Emissions

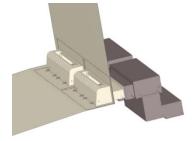
### **FIRING ORIENTATION & DESIGN CONSIDERATIONS**

### **Up-Fired Reformer Burners**



- Tile sits on furnace floor
- Induced or Forced Draft applications
- Typically installed in vertical cylindrical furnaces
- PSA tail gas and natural gas supplied via different manifolds
- Staged air, stage fuel, and ultra-low NO<sub>x</sub> technology can be utilized

#### **Down-Fired Reformer Burners**




- Tile supported from furnace steel
- Air wind box supported on steel channels
- Induced or Forced Draft applications
- Installed in multiple lanes in down-fired furnaces
- PSA tail gas and natural gas supplied via different manifolds or mixed into a single manifold
- Staged air and ultra-low NOx technology can be utilized.

### **Terrace Wall Reformer Burners**



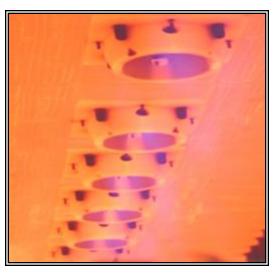
- Tile supported by furnace ledge or unitized construction to wind box
- Air inlet typically horizontal entry
- Burner shape is a flat flame and fired up furnace wall
- Induced or Forced Draft applications
- Installed in multiple levels (vertically)
- PSA tail gas and natural gas supplied via different manifolds
- Staged fuel and ultra-low NOx technology can be utilized



### **INSTALLATION, OPERATION & MAINTENANCE**



Honeywell Confidential - ©2023 by Honeywell International Inc. All rights reserved.


### INSTALLATION



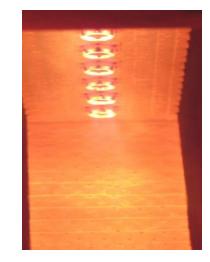











### **OPERATION**



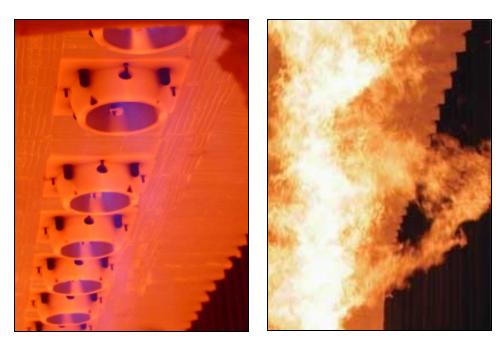


### Introduction of Feed

- More burners brought online
- Firing rate approaching 50% of furnace design firing rate
- No PSA tail gas available
- Steam and Feed introduced



12


### **Design Firing**

- All burners on-line
- Firing rate at furnace design or normal firing rate
- PSA tail gas used as a burner fuel
- Natural gas fuel is reduced in firing rate
- Hydrogen production

### Start-Up

- Low firing rate
- Light off sequence staggered to keep heating uniform
- No PSA tail gas available

### **OPERATIONAL ISSUES THAT IMPACT EFFICIENT REFORMER OPERATION**







### **Avoid**

- Unsealed tube penetrations
- Setting Air Registers Unevenly
- Throttling Fuel to Individual Burners
- Running Off Design Conditions

### **OPERATIONAL DO'S AND DON'TS**



### **Do Contact Burner Supplier:**

- Fuel Composition Change
- New NOx Emission Requirement

### Do at the End of Each Shift:

- Visually Evaluate Flame Quality
- Shoot Tube Metal Temperatures
- Watch for Hot Spots on Tubes



Don't Throttle Fuel Valves to Individual *Burners*Don't Distribute Air Unevenly to Burners

Don't Ignore Poor Flame Quality

### **INSPECT CONDITIONS OF BURNERS**



### **Points of Inspection**

- Ensure burner tile and wind box assembly are aligned (concentric)
- Verify gas tips are in correct orientation & elevation
- Tips are not plugged or blocked with debris
- Pilot is in correct location & elevation
- Furnace insulation is compressed against tile (material will shrink when furnace is fired)

### **COMBUSTION ISSUES**

#### **Problem: High Gas Pressure**



- Indications
  - Fuel gas pressure is higher than design
- Effect
  - Failure to get proper outlet temperature on process side
- Long Term Implications
  - Permanent plugging of gas tips
- Loss of hydrogen production

- Poor flames

- Potential radiant tube damage and failure

### **Problem: Irregular Flame Patterns**



- Indications
  - One side of flame pattern is long, the other side is short
  - Flames lean toward the tubes
- Effect
  - High Tube Metal Temperatures (TMT's)
  - Increased Rate of Tube Coking or Failure
- Decreased heater capacity
- Increased fuel usage

- Long Term Implications
  - Loss of hydrogen production
  - Potential radiant tube damage and failure

#### **Misaligned TIP: Start-Up Condition or After Maintenance**



- Burner Has Natual Gas Tip That is Installed in Wrong Orientation
  - Orientation Must be Corrected!
  - Left Uncorrected:
    - · Flame can impinge on radiant tube
    - · Create hot spot or tube rupture
    - Increase NOx or CO emissions

### POTENTIAL SOLUTIONS TO COMMON COMBUSTION ISSUES

| Issue                                                  | Solution                                               |  |  |
|--------------------------------------------------------|--------------------------------------------------------|--|--|
| Fouled Gas Tips                                        | Clean or Replace Gas Tips                              |  |  |
| Improper Air Register Settings                         | Adjust All Burner Air Registers<br>to Uniform Settings |  |  |
| Replacement Gas Tips Installed in<br>Wrong Orientation | Correct Gas Tip Alignment                              |  |  |
|                                                        |                                                        |  |  |

### TECHNICAL SOLUTIONS FOR REVAMPS & PROCESS IMPROVEMENTS

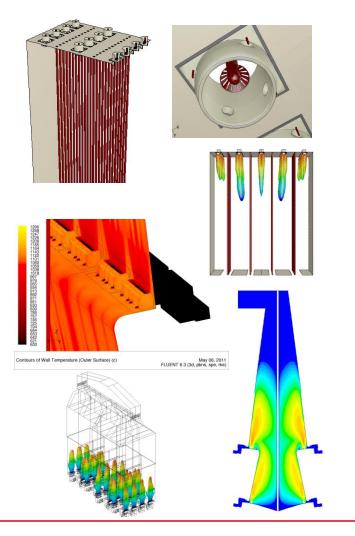


18

Honeywell Confidential - ©2023 by Honeywell International Inc. All rights reserved.

### SUPPORT FOR REVAMPS OR PROCESS IMPROVEMENTS

### Changes that can impact burner performance:


- Change in Feedstock Results in a Change in the PSA Tail Gas which is Fuel Supplied to Burners
- Changing Make-Up Fuel From Natural Gas to Refinery Fuel Gas
- New NO<sub>x</sub> Requirements
- Requiring Increase / Decreased Capacity Operation



#### **Combustion Specialists Provide Value for Reformer Modifications**

### SUPPORT FOR REVAMPS OR PROCESS IMPROVEMENTS

#### CFD Analysis for Retrofits and Revamps



#### Burner Testing and R&D, Beggs, OK





#### • Seven (7) Test Furnaces

- Vertical Up Fired
- Down-Fired Fired
- Radiant Wall
- Horizontally Fired

#### Flare Facility

- Multipoint Flare
- Totally Enclosed Ground Flare
- Elevated Flares
- Thermal Oxidizer
  - Burners
  - UHC & NOx Testing

#### Burner Testing and R&D, Louyang, China

#### • Three (3) Fired Furnaces

- Vertical Up Fired
- Down-Fired Fired
- Radiant Wall
- · Horizontally Fired
- Flare Facility
  - Multipoint Flare
  - Totally Enclosed Ground Flare
  - Elevated Flares





### SUMMARY

### Fundamentals & Design (NOx)

 Select the Right Burner for the Application & Emissions Requirement

### Installation, Operation & Maintenance Considerations

- Operate Burners Uniformly
- Monitor Flames and Tubes
- Inspect Burners and Tube Seals during T/A's

### Technical Solutions for Revamp / Process Improvement

- Collaboration Yields Highest Results
- Right Approach Yields Best Solution / Minimum Risk



Honeywell

Callidus®

### **CALLIDUS ULTRA BLUE SYSTEM BURNERS**



Honeywell Confidential - ©2023 by Honeywell International Inc. All rights reserved.

### THE ULTRA BLUE SYSTEM WITH CALLIDUS <sup>®</sup> ULTRA BLUE HYDROGEN - CUBH LOW NO<sub>X</sub> BURNERS

### **Rapidly Switch From/To Any Fuel**

- 100% Hydrogen Fuel Gas
- 100% Natural Gas Fuel
- CO<sub>2</sub> Rich and CO<sub>2</sub> Lean Purge Gas
- 0% to 100% Purge Gas Fuel
- High or Low Design Pressure
- Premixed or Separate Fuel & Purge Gas
- High 2 Barg or Low 0.2 Barg Design Fuel Pressure

Consistent Low NOx Emissions Across All Fuels<sup>3</sup> No Special Operator Intervention on Fuel Change Normal Furnace Excess Air and Draft Control Ionevwell Callidus® Technologies

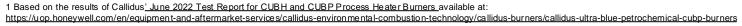
1 Based on the results of Callidus: <u>June 2022 Test Report for CUBH and CUBP Process Heater Burners</u> available at: https://uop.honeywell.com/en/equipment-and-aftermarket-services/callidus-environmental-combustion-technology/callidus-burners/callidus-ultra-blue-petrochemical-cubp-burners

Ready for Energy Transition and Even More Stringent Emissions Regulations

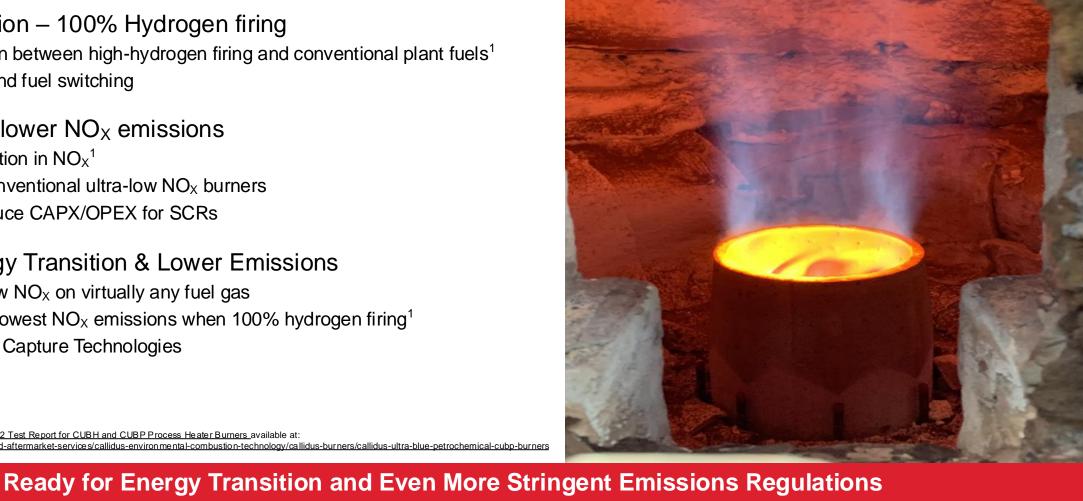
## **THE ULTRA BLUE SYSTEM CALLIDUS ® CUBP Burners with Targeted De-No<sub>x</sub> Gas injection** TDGi<sup>TM</sup>

Energy transition – 100% Hydrogen firing

Flexibly transition between high-hydrogen firing and conventional plant fuels<sup>1</sup>


Rapid, on-demand fuel switching

### Breakthrough lower NO<sub>X</sub> emissions


- Over 50% reduction in NOx<sup>1</sup>
- Compared to conventional ultra-low NO<sub>X</sub> burners
- Eliminate or reduce CAPX/OPEX for SCRs

### Efficient Energy Transition & Lower Emissions

- Breakthrough low NO<sub>X</sub> on virtually any fuel gas
- Can deliver the lowest NO<sub>X</sub> emissions when 100% hydrogen firing<sup>1</sup>
- Enables Carbon Capture Technologies



# Honeywell UOP



Callidus®

**Technologies** 

### THE PROVEN CALLIDUS® ULTRA BLUE® FAMILY OF LOW NO<sub>X</sub> BURNERS

|                                                                                                              | CUBL         | СИВН         | CUBP         |
|--------------------------------------------------------------------------------------------------------------|--------------|--------------|--------------|
| Ultra-Low NO <sub>X</sub> Performance<br>Sub-10ppm NO <sub>X</sub> for many refinery cases <sup>1</sup>      | $\checkmark$ | $\checkmark$ |              |
| Breakthrough Low $NO_X$ Performance<br>Single Digit ppm $NO_X$ for many refinery cases <sup>1</sup>          |              |              | $\checkmark$ |
| Flexible Fuels: 100% H2 to 100% Hydrocarbons and Virtually Any Synthesized or Refinery Fuel Gas <sup>1</sup> | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Optimized for 100% Hydrogen Service <sup>1</sup>                                                             |              | $\checkmark$ | $\checkmark$ |
| Bolt-On Retrofittable / Upgradable                                                                           | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Conventional Burner Operation                                                                                | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| with The Ultra Blue System                                                                                   |              |              | $\checkmark$ |

Honeywell | Callidus<sup>®</sup> UOP | Technologies

#### CUBL

Callidus<sup>®</sup> Ultra-Blue Low NO<sub>X</sub> Burner The Industry Standard Low NO<sub>X</sub> Workhorse

### CUBH

#### Callidus<sup>®</sup> Ultra-Blue Hydrogen Burner

Optimized for Hydrogen Fuel Service Proprietary Flame Stabilization Technology

### CUBP

#### Callidus<sup>®</sup> Ultra-Blue System Burner

Optimized for Hydrogen Fuel Service Proprietary Flame Stabilization Technology Breakthrough Low NO<sub>X</sub> Performance Proprietary Targeted De-NO<sub>x</sub> Gas Injection, TDGi<sup>™</sup>

## **FOR YOUR PARTICIPATION**

### Honeywell | Callidus® UOP | Technologies