Johnson Matthey Inspiring science, enhancing life

Americas hydrogen and syngas technical training seminar

Unlocking potential : Navigating existing hydrogen plant constraints Ken Chlapik

LC Confident

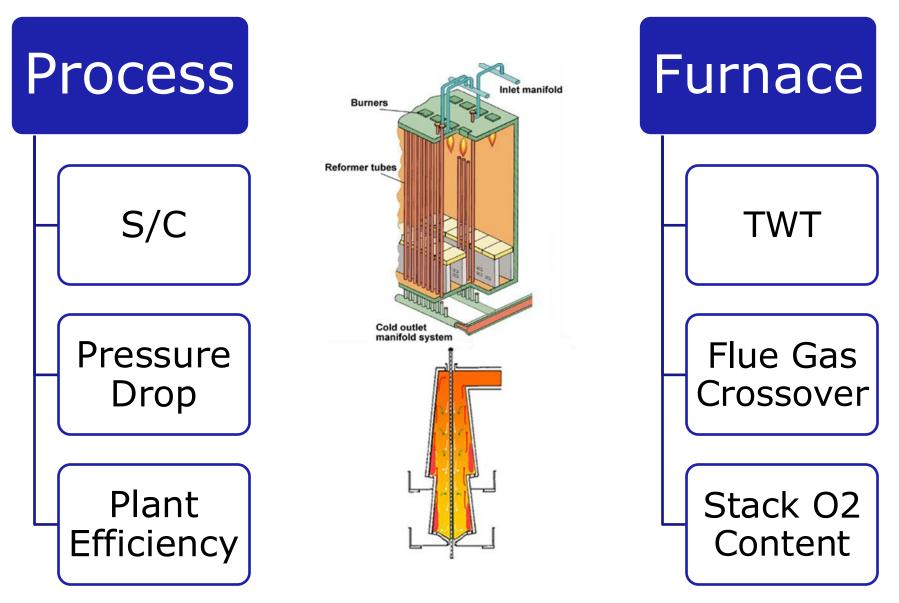
- ➢ Summary CATACEL[™] SSR[™]
- Common Hydrogen Plant Constraints
- > Addressing These Constraints
- Random to Targeted Performance
- Examples of Performance Impact
- Review of SSR Performance Progress

Summary CATACEL SSR

- Common Hydrogen Plant Constraints
- > Addressing These Constraints
- Random to Targeted Performance
- Examples of Performance Impact
- Review of SSR Performance Progress

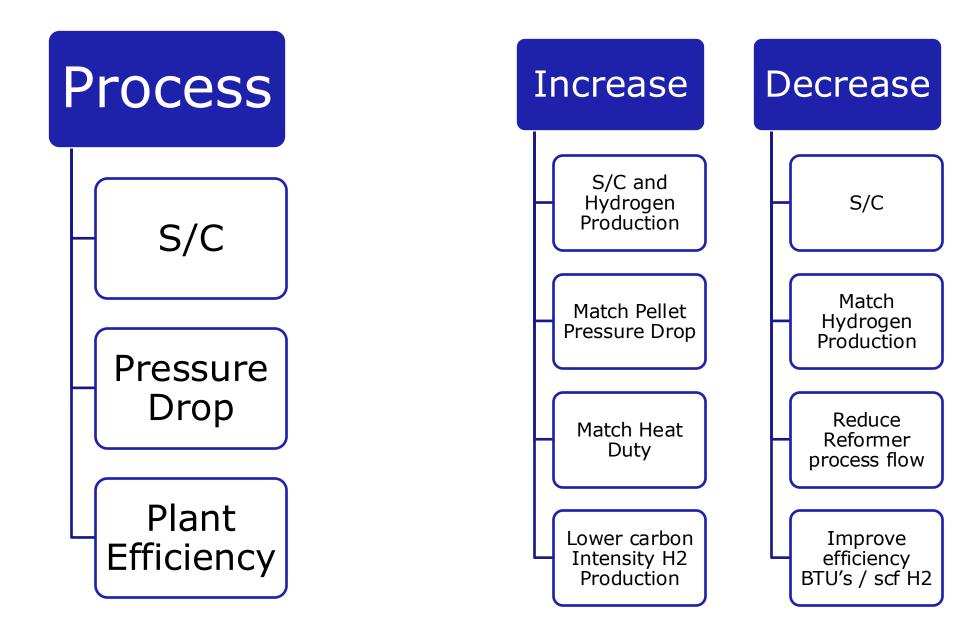
CATACEL SSR - Iterative technology development, optimization, and industry experience

CATACEL – catalyst coated thin metal foil substrate technology

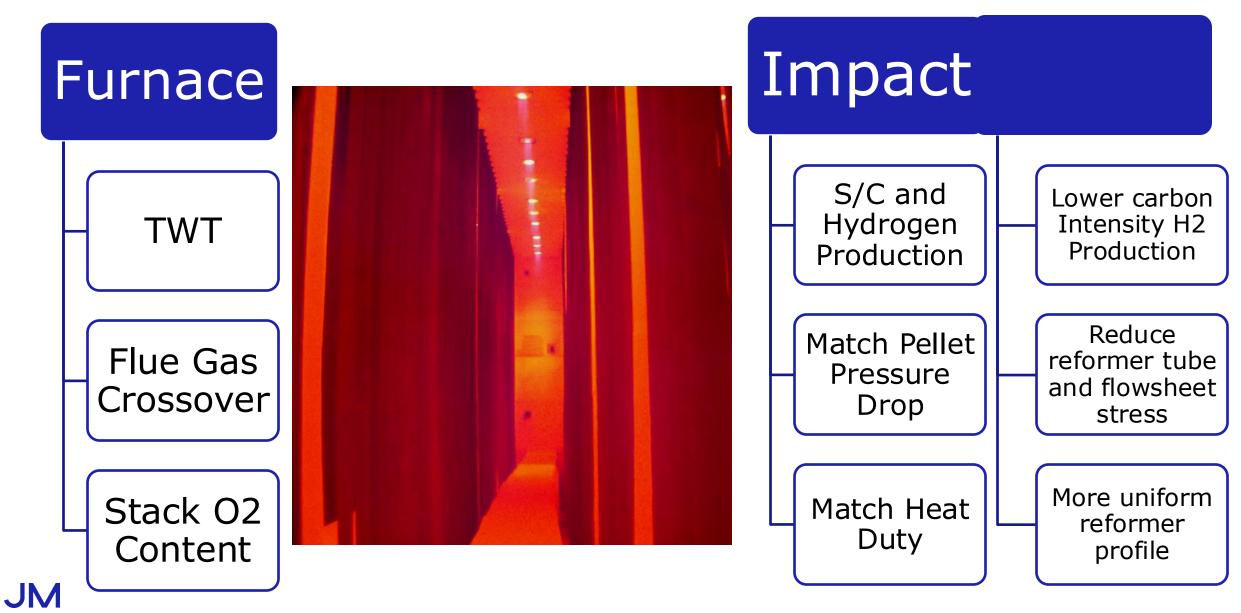

SSR – industrial scale steam methane reforming product using CATACEL technology – removes traditional barriers from pelleted reforming catalyst

- Summary CATACEL SSR
- > Common Hydrogen Plant Constraints
- Addressing These Constraints
- Random to Targeted Performance
- Examples of Performance Impact
- Review of SSR Performance Progress

Common Hydrogen Plant Constraints


JM

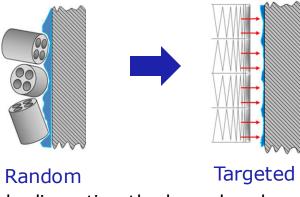
- Summary CATACEL SSR
- Common Hydrogen Plant Constraints
- > Addressing These Constraints
- Random to Targeted Performance
- Examples of Performance Impact
- Review of SSR Performance Progress



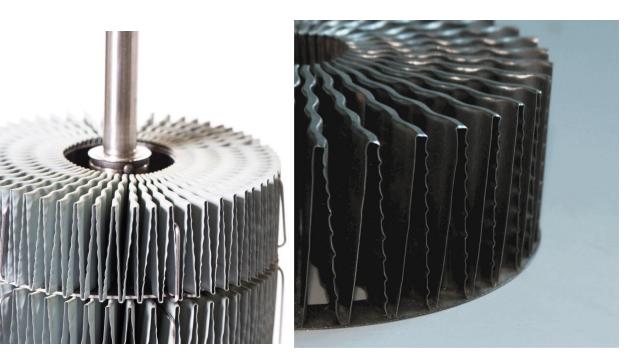
Addressing Process Side Constraints

JM

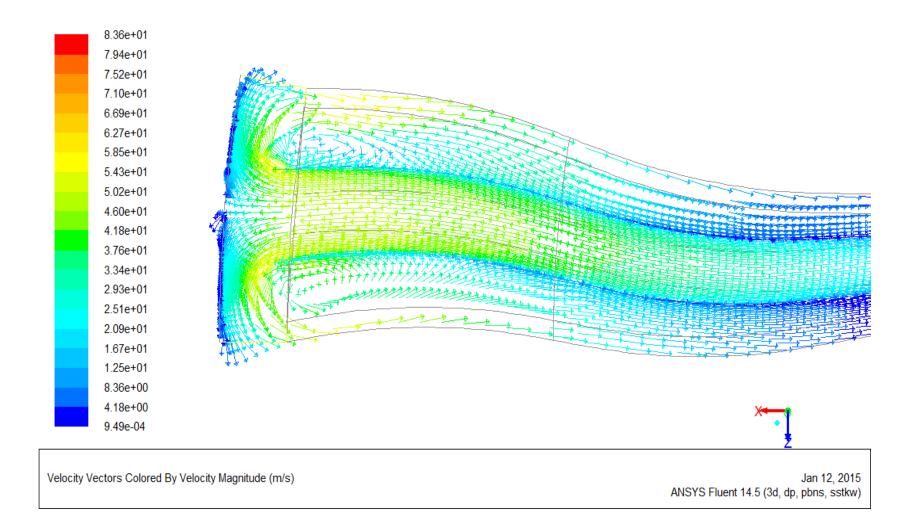
Addressing Furnace Side Constraints



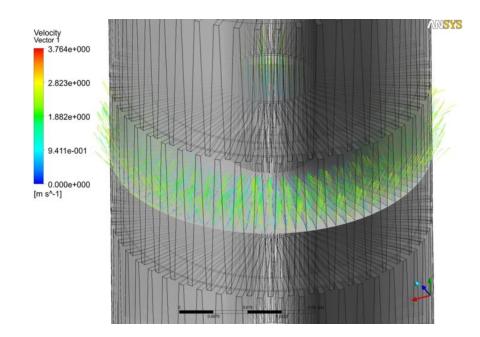
- Summary CATACEL SSR
- Common Hydrogen Plant Constraints
- > Addressing These Constraints
- > Random to Targeted Performance
- Examples of Performance Impact
- Review of SSR Performance Progress

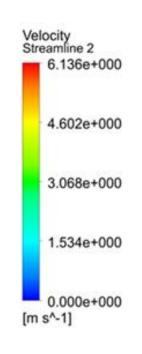

CATACEL SSR technology SSR is a disruptive technology that creates valued solutions for existing hydrogen plants beyond what pellets can achieve

• SSR addresses fundamental science that is limiting further improvement in pellet use



- High voidage structure reduces pressure drop
- Efficient contact and use of active sites
- Step change performance compared to pelleted catalysts


Controlled gas jetting & wall impingement


CATACEL SSR - Gas Jetting

CATACEL SSR - CFD

- **CATACEL SSR** generates high velocity gas jetting
 - Mechanism drives improved heat transfer at modest pressure drop
 - Coated fan structures produce a large reactive surface area

- Summary CATACEL SSR
- Common Hydrogen Plant Constraints
- Addressing These Constraints
- Random to Targeted Performance
- > Examples of Performance Impact
- Review of SSR Performance Progress

Example Overcoming Steam/Carbon Ratio Limitations

CATACEL SSR deployed as direct replacement for pellets

Same feed rate but with reduced S/C ratio

- Enhanced activity of CATACEL SSR
 - Maintains comfortable carbon margins
- Enhanced heat transfer performance
 of CATACEL SSR
 - More fuel, higher flue gas to deliver close approach
 - Impact of additional firing on TWT is minimised by heat transfer capability of **CATACEL SSR**

	Units	Pellets	CATACEL SSR
Feed Flow Rate	Nm³/h	217477.1	182939.6
Thoughput	%	100.0	84.1
	mol/mo		
Steam to Carbon Ratio		2.878	2.260
Inlet Temperature	°C	557.1	557.1
Inlet Pressure	barg	37.1	36.2
Off-Gas	Nm3/h	69712.0	69712.0
Nat Gas Fuel	Nm3/h	2358.7	2894.2
Exit Temperature	°C	849.1	880.5
Exit Pressure	barg	35.2	35.2
Catalyst Pressure Drop	bar	2.0	1.0
Flue Gas Temperature	°C	999.7	1016.3
Max Tube Wall			
Temperature	°C	881.4	903.8
Peak Heat Flux	kW/m2	123.8	126.7
Minimum TWT margin	°C	40.5	22.8
Approach to Equilibrium	°C	2.2	0.6
Minimum Carbon Margin	°C	39.4	39.4
Position	m	2.575	1.781

Example Overcoming Process Limitations

CATACEL SSR deployed as direct replacement for pellets

Same feed rate and unchanged plant operating conditions

- Enhanced heat transfer performance of CATACEL SSR
 - Less fuel consumed
 - Lower TWT and higher TWT margins
- Enhanced activity of **CATACEL SSR**
 - Operation at positive carbon margins without the use of alkalised catalyst

	Units	Pellets	CATACEL SSR
Feed Flow Rate	Nm³/hr	33025	33025
Steam to Carbon Ratio	mol/mol	2.8	2.8
Inlet Temperature	°C	450	450
Off-Gas	Nm³/hr	4225.5	4225.5
Nat Gas Fuel	Nm³/hr	4247.7	4190.5
	%		1.4
Exit Temperature	°C	866.4	864.8
Exit Pressure	barg	23.9	23.9
Catalyst Pressure Drop	bar	2.1	1.4
Flue Gas Temperature	°C	989.5	979.2
Max Tube Wall Temperature	°C	891.6	883.8
Peak Heat Flux	kW/m2	133.5	136.1
Minimum TWT margin	°C	5.7	12.6
Approach to Equilibrium	°C	2.6	1.1
Minimum Carbon Margin	°C	-21.1	20.5
Position	m	2.467	2.467

Example Increasing Incremental Hydrogen Production

- Hydrogen plant changed from naphtha to natural gas feed
- Operation on natural gas has moved the plant onto a TWT limit
 - 15% more H₂ now required
 - CATACEL SSR heat transfer and activity deployed to minimise TWT
 - Lower DP of CATACEL SSR allows operation at 115% rate with same pressure drop as pellets at 100% rate

Case		Base	1	2
Catalyst		Pellets	CATACEL SSR	CATACEL SSR
Description		Base	Same feed Lower firing	More feed Extra firing
Relative feed flow	%	100.0	100.0	115.0
Relative fuel flow	%	100.0	99.5	112.5
Relative combustion air flow	%	100.0	99.4	105.0
Excess air	%	15.0	15.0	7.5
Exit temperature	°C	860	860	861
Methane slip	mol%dry	2.80	2.75	2.80
Max TWT	°C	890	885	891
Pressure drop	bar	1.29	1.01	1.28
Fluegas exit temperature	°C	997	991	1012
Relative hydrogen make	%	100.0	100.2	115.0

- Summary CATACEL SSR
- Common Hydrogen Plant Constraints
- > Addressing These Constraints
- Random to Targeted Performance
- Examples of Performance Impact
- > Review of SSR Performance Progress

Improved efficiency and intensification of existing SMR based hydrogen plants

Mid and large-scale hydrogen lifecycle performance validation

Fuel saving

- >10% fuel savings achieved with European refiner and US petrochemical syngas plant against pellets
- 15% reduction in natural gas usage per scf ٠ hydrogen achieved by US refiner

• CO₂ emissions

- European refiner reduced CO_2 emissions >15%
- US refiner maintaining CO_2 emissions with 15% • uprate enabled by SSR

Increased production

US refiner has achieved 15% increased production

Established lifecycle operation in multiple small can, mid and large hydrogen plants

Multiple charges of catalyst produced to date; charge to charge consistency; over 480,000 hrs of operation

Drop in solution - no tube changeout needed for performance benefits

Renowned support and performance of reforming catalyst in existing hydrogen plants

Combines JM's expertise in syngas with our core capability in precision coating with JM Clean Air automotive and stationary emission control

Send us a message to ask for our advice and review your operation to show you how **CATACEL SSR** can meet your energy, emissions, and uprate needs. We'd welcome providing a valued solution to your existing hydrogen plant.

ken.chlapik@matthey.com

