Johnson Matthey Inspiring science, enhancing life

Americas hydrogen and syngas technical training seminar

Methanation fundamentals

Ibrahim Tabanjah

Contents

03

JM

01 Introduction

02 Methanation chemistry

Catalyst operation

04 Nickel carbonyl

2

Introduction

3

COx needs to be reduced to single figure ppm levels to avoid

Poisoning ammonia synthesis catalyst (throughput)

Forming ammonium carbamate (safety, downtime)

Freezing out in cold boxes (downtime, throughput)

Methanation chemistry

Theoretical aspects

Methanation reactions are strongly exothermic (and consume a lot of hydrogen!) $CO + 3H_2 \rightleftharpoons CH_4 + H_2O$

 $CO_2 + 4H_2 \rightleftharpoons CH_4 + 2H_2O$

 $\Delta H = -206 kJ/mol$

 $\Delta H = -165 kJ/mol$

Theoretical aspects

Methanation reactions are strongly exothermic (and consume a lot of hydrogen!)

CO +	$3H_2 \rightleftharpoons CH_4 + H_2O$	
------	---------------------------------------	--

 $CO_2 + 4H_2 \rightleftharpoons CH_4 + 2H_2O$

 $\Delta H = -206 kJ/mol$

 $\Delta H = -165 kJ/mol$

Temperature rise

- 74°C (133°F) for each 1% of CO converted
- 60°C (108°F) for each 1% of CO₂ converted

Theoretical aspects

Methanation reactions are strongly exothermic (and consume a lot of hydrogen!)	$CO + 3H_2 \rightleftharpoons CH_4 + H_2O$	ΔH = -206kJ/mol
	$CO_2 + 4H_2 \rightleftharpoons CH_4 + 2H_2O$	$\Delta H = -165 kJ/mol$
Temperature rise	 74°C (133°F) for each 1% of CO co 60°C (108°F) for each 1% of CO₂ co 	onverted converted
Conversion is not equilibrium limited, governed by kinetics	 CO is methanated first CO₂ only reacts when CO concentration is 200-300 ppm Methanation of CO₂ is a two-stage reaction 	$CO_2 + H_2 \rightleftharpoons CO + H_2O$ $CO + 3H_2 \rightleftharpoons CH_4 + H_2O$
JM		© Johnson Matthey 2024 7

Typical process conditions

Methanation reaction

Good methanation catalyst will demonstrate

High conversion

JM

COx slip <5ppm standard, 1-2 ppm common

Low temperature activity

Increased Ni content and effective Ni surface area

High mass transfer rate

3

Smaller pellets to reduce diffusion limitation at higher temperatures

Reaction zones

Reaction can be

considered as 2 zones

'Bulk methanation' quickly reduces carbon oxides <0.05% while increasing gas temperature Temperature

'Polishing' zone for required exit specification

Bulk methanation	Polishing
	Distance down catalyst bed $$

JM

2

00

Typical data

KATALCO 11-series

KATALCO[™] 11-series

- Inlet temperature is plant-specific (design & operating conditions)
- Catalyst inlet temperature can be as low as 210°C (Formation of Ni(CO)4 and Fisher-Tropsch by products formation to be considered)
- Lifetimes 20-30 years due to high and stable activity
- Low and stable pressure drop
- High thermal stability
- Robust enough to withstand back washing in the event of external contamination

KATALCO 11-series 'R'

- Pre-reduced and stabilized
- Ideal for the top 20%-30% of the catalyst bed
- Simplifies start up
- Saves up to **12 hours**

Pre-reduced catalyst

Can use **KATALCO** 11-series pre-reduced and stabilized variants

Made under carefully controlled conditions to give the highest possible activity

Solves problem of slow heat up by initiating methanation reaction early

Alternate loading options

100% bed pre-reduced (more expensive)

Fully pre-reduced **20%-30% of catalyst bed** (cost effective)

20-30% pre-reduced

Option 2 top layer strikes fast; simplifies start up saving ~12 hours compared to fully oxidic charge

KATALCO 11-5MC / 11-6MC

Very low pressure drop dry methanation catalyst due to specialized shape

Pressure drop governed by equivalent diameter and voidage

High voidage, hence low pressure drop

Relative PD estimate

Shape	Relative pressure drop
3-6 mm sphere	103%
KATALCO 11-4	100%
5 mm diameter ring	41%
KATALCO 11-5MC KATALCO 11-6MC	30%

14

Catalyst operation

Methanation start-up: example of bed reduction

30 % pre-reduced KATALCO 11-4R

For quick 'strike'

Rapid reduction of bottom bed at 400°C (752 °F)

Minimize risk of nickel carbonyl formation

Ensure maximum catalyst activity achieved

Normal operation

High catalyst activity designed for long life

Most reaction in top of bed

Temperature profile moves down the bed

Polishing to low ppm levels

Catalyst lives 10-15+ years

Change out is typically determined by vessel inspection schedule

Normal operation

High catalyst activity designed for long life

Most reaction in top of bed

Temperature profile moves down the bed

Polishing to low ppm levels

Catalyst lives 10-15+ years

Change out is typically determined by vessel inspection schedule

Feed COx increases:

- → reaction rate increases
- → COx slip decreases
- → exit temperature increases

Lower inlet temperature to avoid high temperature plant trip

Abnormal conditions

Gradual steady rise across whole bed

Inadequate reduction?

Sudden movement of reaction zone with no change in slope

Poisoning/fouling of top? Poor reduction of top?

Normal temperature profile, high outlet carbon oxides Channelling through bed?

Mechanical problems? (bypass valve, heat exchanger) Analytical problems?

19

Unusual operating conditions

High COx levels CO2 System Upset / LTS bypassed

Total concentration of carbon oxides < 3%

Inlet temperature 210-250°C (410-480°F)

If necessary, increase S:C ratio and/or lower plant rate

High water levels Normal level 2-3% water in inlet gas

If > 3%, can lead to high CO_2 in exit gas

Might need to increase bed inlet temperature

Operating experience up to 7% water

Plant mal-operation

Normal catalyst maximum exit temperature is 450°C (840°F) Excursions up to 600°C (1100°F) for several hours can be tolerated – check vessel integrity

In the event of a temperature runaway, the operator may take some steps to protect the vessel¹:

- Isolate on inlet side
- Blow down to atmospheric
- Purge with nitrogen to aid cooling
- Exclude air to avoid exothermic oxidation

¹ The steps described above is an example of steps operators may take to protect vessels and should not be taken as a recommendation of specific actions to be taken in the case of a temperature runaway.

Catalyst poisons

Most poisons **originate from CO₂** removal system

Carry-over of a **small amount of liquid** not generally serious

Large volumes of liquid carry-over will have a serious effect

Sulfur is a **poison**, but normally **absent** unless LTS bypassed

JN

Catalyst poisons

Most poisons **originate from CO₂** removal system

Carry-over of a **small amount of liquid** not generally serious

Large volumes of liquid carry-over will have a serious effect

CO₂ Solvent ↓ Carryover	Effect \checkmark
K ₂ CO ₃	Blocks pores; removable
As ₂ O ₃	Serious; irreversible poisoning
Sulpholane	Decomposes to S; poison

Sulfur is a **poison**, but normally **absent** unless LTS bypassed

Catalyst poisons

Most poisons **originate from CO₂** removal system

Carry-over of a **small amount of liquid** not generally serious

Large volumes of liquid carry-over will have a serious effect

Sulfur is a **poison**, but normally **absent** unless LTS bypassed

CO₂ Solvent ↓ Carryover	Effect \checkmark
K ₂ CO ₃	Blocks pores; removable
As ₂ O ₃	Serious; irreversible poisoning
Sulpholane	Decomposes to S; poison

Some operators have successfully recovered from liquid carryover by condensate back-washing the bed

Shutdown

JM

If process gas temperature > 200°C (390°F), can be left in atmosphere of process gas for short periods

<u>____</u>

Below 200°C (390°F),

must be purged with

an inert to prevent

carbonyl formation

Reduced catalyst pyrophoric; oxidation very exothermic:

- Have appropriate firefighting kit available
- Transport in metal skips/metal-sided trucks

Nickel carbonyl

Nickel carbonyl hazard

Formation of Ni(CO)₄ is a potential hazard Extremely flammable liquid and vapor

Fatal if inhaled – 2ppmv (IDLH by NIOSH)

Target daily average concentration 0.001ppmv (PEL by OSHA)

*Operators should review relevant SDS for exposure limits as they may be different for each country/jurisdiction.

Avoiding Ni(CO)₄ formation

Under normal operating conditions

Steam reformer has a high CO and high Ni, but high temperatures

After LTS, temperatures low, but low CO and low Ni

Under normal operating conditions

Start up, shutdown, etc. – it is possible to form $Ni(CO)_4$

To avoid formation of Ni(CO)₄

Keep the temperature above 200°C (392°F) when the methanation catalyst is exposed to gas containing CO (refer to JM operating manual or the graph in the next slide)

Nickel carbonyl formation

Conditions for the formation of 0.001 ppm nickel carbonyl*

*An appropriate safety margin should be added to the predicted boundary $\ensuremath{\mathsf{JM}}$

Summary

Methanation summary

Methanation is last purification step in Ammonia & Hydrogen production

Ensures long ammonia synthesis catalyst life and high hydrogen purity

KATALCO 11-4 methanation catalyst

- Available pre-reduced and stabilized
- Robust, offering low stable pressure drop
- High activity and ability to operate at lower temperatures

KATALCO 11-5MC/11-6MC methanation catalysts

- Same performance benefits as **KATALCO** 11-4 with significantly lower pressure drop
- Product selection is dependent on plant drivers

Ability to withstand abnormal operation

