Johnson Matthey Inspiring science, enhancing life

Americas Hydrogen and Syngas Technical Training Seminar

Autothermal/Secondary reforming

Roshan Moonisar

JM

Agenda

Introduction to Secondary and Autothermal Reforming

Typical Reformer Configuration & Secondary Reformer Vessel Details

Burner Design, Combustion and Gas Mixing

Case Study

Alumina Vaporization

Operating Philosophies during Start-up & Shut-down

JM Secondary Catalyst Offerings

JM's Experience & Development of ATR

Secondary and Autothermal Reforming Concept

The secondary reformer in the ammonia plant plays an important role:

- Further converting methane (0.3 – 0.5% CH₄)
- introducing nitrogen into the process by the addition of air
- generate heat for HP steam in waste heat boiler
- helps down-size the primary reformer

Combustion of hydrogen provides the heat required to achieve a very low exit methane concentration

Oxygen fired autothermal reformers (ATR) are increasingly common in hydrogen and methanol plants

- Helps reduce capex in larger plants by reducing the required duty of the primary reformer
- Enables alternative feeds such as coke oven gas

Brings several benefits

- Low methane slip due to high temperature
- Stoichiometric synthesis gas for ammonia.

Vessel details

Mechanical features

- 1. Refractory lined pressure shell
- 2. Water jackets to keep shell cool
- 3. Combustion section in upper region
- 4. Fixed catalyst bed in lower region
- 5. Catalyst supported on brick arch

Loading features

- 1. Alumina hold-down lumps or tiles
- 2. Guard layer of large pellets of used
- 3. Main bed of standard catalyst

JM

Autothermal Reformer Burners

Burner design and mixing volume

Air/oxygen injected at high velocity	Forces mixing of air and process gas	Combusts only 20% of process gas	Must also mix in other 80%	Should achieve a uniform mixture	Catalyst bed can affect flow patterns
---	---	---	--------------------------------------	---	--

Burner Design - Minimising the potential for damage

Combustion occurs in vessel neck

No risk of overheating catalyst bed

Reduces radiant heating of burner

Creates intimate mixing of gas and oxidant

Simple design of burner

No complex nozzles/swirlers

Self-cooled by oxidant flow

Oxygen Firing

Mass flow of oxygen = 20% of air

Oxygen jet creates all the mixing

Mixing more difficult with oxygen

Burner tends to use higher velocities

Oxygen can burn materials

Need to use **higher alloys** for burners

Higher flame temperatures result

More **arduous duty** for refractory lining

Alumina vaporisation can occur

JM

Efficient Combustion

Expertly designed for maximum throughput and minimum downtime

A clever and reliable "long neck" design which **maximises throughput** and **uptime**

Velocity control

High velocity

Aids feed and O_2 **mixing**

Low, uniform velocity

Prevents catalyst bed movement

No need for expensive heat shield **target tiles**

A simple, **low-maintenance burner** with **exceptional performance** and **long life**

Simple and low maintenance

No complex nozzles or swirlers that may become blocked or damaged and lead to premature failure

Self-cooled by oxidant flow – No need for additional external cooling

12 years life with no maintenance

Optimised position in the reactor, protected from high radiant heating

Excellent performance

Delivers almost perfect mixing 40% turndown and even lower

Poor Gas Mixing

Poor mixing in mixing zone gives high approach and high methane slip

50 CL140°FI 01 03 Gas Gas feed contains No need for Ignites hydrogen, V630°C(1765°F) Antonition automatically spark or pilot mixes with oxygen 02 Poor mixing can be due to Poor burner design Incorrect installation Insufficient mixing volume Burner gun failure

11

0

5

Inefficiency caused by poor process gas mixing in the catalyst bed

Effects of Poor Performance

Poor performance with 20-50°C ATE

 \rightarrow

For **1 extra** mole CH_4 after secondary 4 moles H_2 are lost in the reformer and shifts

 $CH_4 + H_2O \rightleftharpoons CO + 3H_2$

 $CO + H_2O \rightleftharpoons CO_2 + H_2$

4 moles H₂ would form 2.66 moles NH₃

Value of reducing CH₄ slip by 0.1% on a 2000tpd ammonia plant

Value depends on

whether the syn loop

has hydrogen recovery

With H₂ recovery - approx. 14tpd ammonia

Without H_2 recovery - can be >30tpd ammonia

Minimise the autothermal reformer performance issues by following good practice in:

- Design and installation of burner
- Regular burner inspection and maintenance
- Right selection of refractory, catalyst, holddown and supports
- Maintain mixing zone length

Even skimming a bed can be costly in lost production time

- **30 hrs** to shut-down, cool and purge system
- **3 days** to effect entry, clear fouled catalyst, inspect and re-charge
- **30 hrs** to restart and be back on spec at rate

Case study – Reduced Performance due to poor mixing

Standard Kellogg design ammonia plant

• 1960's vintage, operating above design capacity

As rate increased

- Exit temperature to boilers 101-A/B diverted
- Methane slip increased

© Johnson Matthey 2024

Case study - Improved Performance due to installation of new burner and catalyst

Ammonia plant installed both the Johnson Matthey high intensity ring burner and a short load of **QUADRALOBE**[™] catalyst

On restart the methane slip from the secondary reformer was reduced from 0.36 to 0.25 mol%

- Improvement allowed for a production increase of 15 mtpd
- Increased production at US\$ 150/te margin, worth US\$
 820,000/year

Alumina vaporization

Alumina reacts with steam

 \rightarrow

 $AI_2O_3(s) + 3H_2O(g) \rightleftharpoons 2AI(OH)_3(g)$

As hot gas flows through target tiles and top catalyst → Forward reaction occurs

 $\mathsf{Al}_2\mathsf{O}_3(\mathsf{s}) + \mathsf{3H}_2\mathsf{O}(\mathsf{g}) \to \mathsf{2Al}(\mathsf{OH})\mathsf{3}(\mathsf{g})$

Alumina removed from top of catalyst bed

Gas becomes saturated with aluminium hydroxide

As gas cools in the catalyst bed Reverse reaction occurs 2AI(OH)3(q) \rightarrow AI₂O₃(s) + 3H₂O(q)

Alumina crystallises out on colder catalyst surfaces

Effects of alumina condensation:

- Increase in pressure drop
- Loss in activity due to physical binding of catalyst
- Maldistribution of process gas through ed, impacting efficient use of the catalyst
- Fouling of downstream waste heat boiler
- Difficulty in discharging the catalyst

JM

Signs of alumina vapourization

Target tiles after operation

Vaporized tiles and large catalyst

Severe fouling of main bed

Ruby formation on holddown material

Startup and Shutdown

JM

1 Maintain **auto-ignition conditions within ATR**

2 Maintain control during ignition – start-up

3 Control and trip system design – **shut-down**

4 No steady-state fired heater requirement

ATR catalysts – requirements

Activity \propto geometric surface area (GSA)

Four key requirements

- **1.** Low pressure drop
- 2. High activity
- **3. Chemical** stability
- 4. Mechanical stability

Increased severity of conditions Oxygen firing Reduced steam ratios Higher exit temperatures Higher space velocities

Catalyst Deactivation and Breakage

Catalyst is exposed to very high temperatures

Nickel sintering is the main deactivation mechanism of the catalyst

Most poisons pass straight through the catalyst bed

Catalyst can:

1 Break up in service Usually linked to a plant upset (wetting)

Suffer physical blockage Alumina vaporisation

2

Become overheated and fuse Causes increased pressure drop and gas mal-distribution

Johnson Matthey Secondary Reforming catalysts/inert material

Catalyst solutions

KATALCO 54-series Catalyst of choice for sec. reformers

KATALCO 23-series Catalyst of choice for ATRs

KATALCO 28-series Higher activity catalyst

KATALCO 89-series Advanced protection catalyst

Hold-down and supports

KATALCO 90-series Hold-down alumina lumps

KATALCO 23-8EQ Active hold down

KATALCO 92-series High purity alumina support balls

KATALCO 94-series Alumina and zirconia tiles

QUADRALOBE catalysts

Provide the best combination of

Activity (maximum GSA)

Thermal stability

3 Mea Low

Mechanical strength/ Low PD

Superior Performance with **KATALCO** 54-9Q

An innovation in Secondary Reforming catalysts

The high temperatures in ATR and secondary reformers means that the reaction happens in a concentrated diffusion film.

Johnson Matthey are the only catalyst supplier with an egg-shell Secondary Reforming catalyst. The patented technology allows 20-25% higher activity over conventional catalyst due to improved metal distribution and active site accessibility.

after 6 years on line					
	100% KATALCO 54-8Q	50% KATALCO 54-8Q 50% KATALCO 54-9Q			
Bed volume (m ³)	12.0	12.0			
Outlet T (°C)	979	978			
CH4 slip (mol%)	0.36	0.34			
ATE (°C)	2.7	2.0			
dP (bars)	0.13	0.13			

Johnson Matthey experience and innovations

JM's ATR technology is well proven

>40yrs experience with ATRs

Rugged/reliable designs with low maintenance input

Experience with 23 operating ATRs

Experience with 12 O₂ fired units

• Only ATR where air and O₂ firing use the same design

JM's ATR catalyst is well proven and world leading Avoids alumina vaporisation and condensation

Long term thermal and mechanical stability

8 year lives with little pressure drop build up

Developed the design in late 1960s

Uses a **unique** design Developed **in house** Used on all ICI plants for >30 years

Gives almost perfect mixing Exceptional operability record Very little maintenance required

