

Americas hydrogen and syngas technical training seminar

Feedstock purification

Dimitri Trufanov

Contents

02	Hydrodesulfurization		e de la compañía de l
03	Chloride absorption		
04	Sulfur absorption		
05	Ultrapurification		5
06	Combined purification product		
JM		***	

2

Importance of feedstock purification

Preventing equipment damage and protecting catalyst lives

Impurities in a syngas plant feed can cause issues:

- sensitive catalysts can be poisoned (deactivated)
- production constrained due to decreased catalyst activity and shorter life
- equipment contamination / corrosion impacts process and safety
- some species can lead to unexpected exotherms and vessel failure
- unplanned downtime

Most affected catalysts:

- pre-reforming,
- steam reforming (SMR), and
- medium/low temperature shift

SMR hot spots caused by poisoning

Purification challenges depend on hydrocarbon feed type

Туре	Composition	Poisons	
	Mainly CH_4 , small amount of C_2 , C_3 , N_2 and CO_2	S level:	Low (typically 2-20 ppmv)
NG / LNG		Type:	Usually simple (mercaptans; H_2S)
		Other:	Olefins and COS
NG	Similar to NG, with higher levels of heavier hydrocarbons	S level:	Low
Condensates		Type:	COS, H ₂ S
or LPG		Other:	Chlorides
	Light straight run through to cracked heavy naphtha	S level:	High (typically 100-200 ppmw)
Naphtha		Type:	Can be difficult (thiophenes)
		Other:	Chlorides, olefins and metals
	ry Off Hydrogen rich feed, potentially higher levels of unsaturated hydrocarbon	S level:	Depends on source
Refinery Off		Type:	Can be difficult (thiophenes)
005		Other:	Chlorides, olefins and acetylenes

Selecting the right purification stages to meet your requirements Hydrocarbon purification requirements vary depending on the feed and flow scheme

© Johnson Matthey 2023

The first layer of defense

Hydrodesulfurization (HDS) solutions **JM**

Selecting the right purification stages to meet your requirements Hydrocarbon purification requirements vary depending on the feed and flow scheme

+

HDS

KATALCO 41- and 61series Converts organo-S, organo-Cl and olefins

Simplifying the poison with hydrodesulfurization

KATALCO HDS catalysts converts a wide range of organo-compounds to H₂S and HCl

- Organic sulfur compounds are not readily absorbed by ZnO
- Organic sulfur and chloride compounds are severe poisons to sensitive downstream catalysts
 - Pre-reforming catalyst
 - Primary reforming catalyst
 - LTS catalyst
- Converting organic sulfur to H_2S is beneficial. H_2S is absorbed by ZnO
- Organic chlorides are also converted to HCl, which can then be absorbed by the chloride guard

8

Converting organic components for ease of removal

Common HDS catalyst solutions

CoMo and **NiMo** catalysts are used in most syngas HDS duties

CoMo is more common and more **cost effective**

NiMo is preferred for elevated **olefin** levels and high **carbon oxides**:

- MeOH plants with CO₂ recycle
 / addition before HDS
- Plants with high CO₂ levels in natural gas feed
- Feeds with higher olefin levels

Johnson Matthey portfolio of HDS solutions

© Johnson Matthey PLC, 2023

Case study: Managing high olefins without costly recycle systems

Lower temperature operation with KATALCO 61-2F

Standard HDS	
Inlet temperature	300°C/570°F
Olefins in feed	5.1 mol%
Exotherm	100°C/180°F
Exit temperature	<400°C/750°F
Feed required to be recycled back	44%

KATALCO 61-2F	
Inlet temperature	250°C/480°F
Olefins in feed	5.1 mol%
Exotherm	150°C/270°F
Exit temperature	<400°C/750°F
Feed required to be recycled back	0

Active at temperatures down to 250°C

Operate with high olefins without a costly recycle configuration

KATALCO

61-2F

Gradually declining performance of a resilient catalyst

Causes of HDS deactivation

R	Carbon fouling	
	Carbon formation	R
PP)	Iron scale	O d fe
	Heavy metals	S
000	Sintering	

Rising pressure drop, channelling of gas flow, and catalyst deactivation can result in lower feed rates or cause the premature slip of impurities

Handling fouling and increased bed pressure drop

Tailored catalyst and support loading to maximize long-term performance

1. Ceramic balls as hold-down material:

Fouling => reduction in voidage => **rapid increase of dP =>** limit throughput

2. Shaped hold-down material with higher voidage, such as **DYPOR** 604, helps maintain a low pressure drop

Protecting against the corrosive impacts of chlorides

Cl removal absorbents

Protecting against the corrosive impacts of chlorides

Chlorides (halides) are a severe poison for downstream catalysts

Molecular: increased rate of sintering

Catalyst: The downstream shift Cu-based catalysts scavenge chlorides very effectively and get poisoned

Equipment: HCl (especially in the presence of water) cases corrosion in existing metal pipework

Economics: Incremental production loss due to lower water gas shift efficiency

- Chlorides are highly mobile at the reforming operating temperatures
- Chlorides migrate as far as the Cu-based shift catalysts (or methanol synthesis catalyst)

Why not use ZnO for CI removal?

Weakens H_2S absorbent (ZnCl₂ sublimes at operating temperature)

Possible downstream Zn and Cl contamination

Potential CI slip

Significant loss of ZnO capacity for sulfur

2 Poisoned

ZnCl₂ blocks absorbent surface and pores to prevent sulfur absorption

Introducing KATALCO 59-4

Designed for cost-effective HCl removal

KATALCO 59-4 is a proprietary chemical absorbent which contains an optimized level of alkali promoter to **lock up** chloride via an irreversible reaction:

 $Na_2CO_3 + 2HCI \rightarrow 2NaCI + CO_2 + H_2O$

Low and stable pressure drop due to high particle strength

Excellent performance

over a wide range of operating conditions, between 480°F and 750°F **Cost effective** chloride removal

Reliable performance and long predictable lives

Chloride removal to **very low levels**, <0.1 ppmv Simple to install and operate

Effective removal of H₂S from feeds

ZnO for H_2S removal

Effective removal of the most common impurity: H₂S

Finding the right sulfur removal solution

ZnO is a highly effective absorbent for trapping H_2S

Absorbent properties needed for protection

Performance is not solely determined by the ZnO content

Maximum S pick-up requires:

- High bulk density provides more ZnO per unit volume
- High **porosity**
 - Allows access of H_2S to center of catalyst pellet
 - Porosity maintained as ZnO is converted to ZnS
- Highly accessible surface area
 - Sharp sulfur absorption profile at high space velocities

JM has continually developed the **KATALCO** 32-series of absorbents for over 60 years to provide a portfolio of ZnO products to meet every need

© Johnson Matthey 2023 23

Balancing porosity, density, and strength

Sulfur absorption capability is very sensitive to porosity So, the **optimal window of porosity** is small

JM granulated ZnO is more porous than extrudates So, sulfur can access the whole pellet

Protecting pellet strength is critical. So, cement reinforcement makes them **stronger** than extrudates

Sulfur absorption vs. particle porosity

24

Maximizing sulfur pickup

Challenges in obtaining optimum porosity in ZnO formulations

Sulfur absorption (ZnO \rightarrow ZnS) causes lattice expansion

ZnS molar volume is higher

Lattice expansion causes pore blocking

Actual pick up is < theoretical Rate of absorption limited by pore/lattice diffusion

Very low porosity formulations suffer from poor sulfur pick up

Radiographs of pellet profiles

Performance, confidence, and reliability More than 900 JM absorbent loads world-wide

KATALCO 32-4 A well-established ZnO, optimized to provide a balance between capacity, porosity and cost.

KATALCO 32-5 Denser by design giving a higher capacity that enables longer bed lives and reduced lifecycle costs.

KATALCO 32-6 Highest sulfur capacity for longest cycle length. Reduce changeout costs and enhance protection against sulfur spikes.

A range of flow schemes, vessel designs, and operating needs

Sulfur removal: single bed

Use of single bed:

- Low and predictable sulfur level (typically)
- Bed is sized to operate for a whole number of turnaround cycles
- Requires high-capacity absorbent with sharp MTZ: maximizes bed utilization

28

Sulfur removal: lead / lag

Upstream reactor can be operated with H₂S slip to **maximize sulfur pick-up in lead bed**

• Outlet = 80 - 90 % of inlet

Lead bed changed out online

- Lag bed used alone
- Lead bed re-commissioned in the lag position (interchangeable)

Requires high-capacity absorbent

Maximizes bed utilization

JM

• Slacker mass transfer zone (MTZ) is irrelevant

29

Sulfur removal: lead / lag

Upstream reactor can be operated with H₂S slip to **maximize sulfur pick-up in lead bed**

• Outlet = 80 - 90 % of inlet

Lead bed changed out online

- Lag bed used alone
- Lead bed re-commissioned in the lag position (interchangeable)

Requires high-capacity absorbent

Maximizes bed utilization

JM

• Slacker mass transfer zone (MTZ) is irrelevant

Sulfur removal: lead / lag

Upstream reactor can be operated with H₂S slip to **maximize sulfur pick-up in lead bed**

• Outlet = 80 - 90 % of inlet

Lead bed changed out online

- Lag bed used alone
- Lead bed re-commissioned in the lag position (interchangeable)

Requires high-capacity absorbent

Maximizes bed utilization

JM

• Slacker mass transfer zone (MTZ) is irrelevant

Maximizing catalyst lives using deeper purification

Ultrapurification of sulfur

Maximizing catalyst lives using deeper purification Polishing sulfur to lower levels

© Johnson Matthey 2023 33

The challenges of reducing impurities to ultra-low levels

Stringent purification requirements for maximizing the performance of high-activity catalysts

	Sulfur	<0.1 ppmv: poison
Pre-reforming and	Chlorides	<0.1 ppmv: poison
steam reforming catalyst requirements	As/V/Pb/Hg	<5 ppbw: poison
	Olefins	<1-2 vol %: carbon formation

MTS/LTS catalyst	Chlorides	<5 ppbv: se
requirement	Sulfur	<0.1 p

JM ultrapurification products to fit your plant design

JN

Combined product

Johnson Matthey's KATALCO 33-1

- 1 High hydrodesulfurization (HDS) activity
- 2 High-capacity H₂S removal
- 3 And Ultra-purification (<5 ppb S exit)
- All in a single catalyst solution

Key product benefits:

No need for prematurely discharging HDS catalyst when reloading zinc oxide absorbents

Lower sulfur slip vs. traditional sulfur removal absorbents

Works with very low inlet sulfur concentrations, requires no sulfiding step and has full HDS activity from day one

Simple catalyst loading, discharging and disposal

KATALCO 33-1 performance

Case study 1 Large North American syngas plant

Previously installed two different purification charges containing competitive **HDS and ZnO** materials

Charges lasted **5 and 2.6 years,** respectively

After installing Johnson Matthey's **KATALCO** 33-1, the customer was able to utilize the higher overall sulfur capacity.

Resulting life: nearly 9 years

JM

KATALCO 33-1 achieves longest life

Desulfurizer comparison

JM provides a complete and trusted purification package

Process security from start-up to shut-down

2

1

Expertise in selecting the best HDS solution from CoMo and NiMo portfolio to target a range of feeds and operating conditions

Continued development of the 32-series of catalysts to provide a portfolio of ZnO products to meet every need

3

Ultrapurification for **optimum protection** to maximise the performance of downstream high activity catalysts

Unique 3-in-1 product combines high HDS activity, high H₂S capacity, and ultrapurification in a single catalyst solution

Simple, effective solutions for impurities removal

	Feedstock flexibility	Ability to operate with a wide range of feeds		Downstream equipment	Preventing HS&E incidents and improve process safety
	Robust operation	Suitable for varying operating conditions	i	Technical support	Full technical team for purification expertise, modeling and guidance
₹ 7	Long and predictable bed lives	Meet your major turnaround schedule		Peace of mind	JM is a reputable supplier with product availability
		1		5	

Johnson Matthey Inspiring science, enhancing life

Thank You

KATALCO and PURASPEC are trademarks of Johnson Matthey