Johnson Matthey Inspiring science, enhancing life

Americas hydrogen and syngas technical training seminar

Flowsheet basics Olawunmi Odunola

Contents

Flowsheet overview

 $\ensuremath{\mathbb{C}}$ Johnson Matthey PLC, 2024

Hydrogen flowsheet

Ammonia flowsheet

Methanol flowsheet

Purification

Function:

1 Converts organics

2 Absorbs impurities

3 Protects downstream catalysts

Technology used

6

Purification – Possible layouts

Purification - Differences

Hydrogen

JM

- Variety of feeds
- Removal of impurities including olefins for ROG or light naphtha feed

Ammonia

- Typically NG feed
- Recycle from syn loop
- Pressure drop importance
- Downstream CuZn protection

Methanol

- Typically NG feed
- Downstream CuZn protection

Operating conditions generally the same

Steam reforming

Pre-reformer

Function:

Convert hydrocarbons to CH₄, 1 CO, CO₂ and H₂

Feedstock flexibility 2

Reduction of SMR size and 3 fuel and emissions

Revamp to increase hydrogen 4 production

Technology used

JM

How: Single adiabatic reactor ٠ High activity Ni based catalyst Eliminates C_2 and higher hydrocarbons Hydrogen Ammonia **Methanol** 10

/ PLC, 2024

Johnson N

Pre-reformer

Pre-reformer - Differences

Hydrogen

- Feed stock flexibility including naphtha feeds
- Increased hydrogen production
- Prolonged reformer life

Ammonia

- Feed stock flexibility
- Increased plant rate
- Prolonged reformer life
- Use of larger primary reformer catalyst for reduction in pressure drop

Methanol

- Feed stock flexibility
- Increased plant rate
- Prolonged reformer life
- Use of larger primary reformer catalyst for reduction in pressure drop

JM

Heat is integrated with primary reformer

Primary reformer

Function:

Convert hydrocarbons to CH_4 , CO, CO_2 and H_2 1

Generate hydrogen 2

Technology used

Primary reforming – Various technologies

Top fired

Terrace wall

Primary reformer - Differences

Hydrogen

JM

- Mid to high exit temperature
- Hydrogen versus export steam balance
- Maximise conversion to H₂

Ammonia

- Lower exit temperature than H₂
- Higher methane slip than H₂ due to secondary reformer
- Pressure drop importance
- Above design production

Methanol

- Highest exit temperature
- Lowest operating pressure

S:C set by feed carbon number or downstream units for hydrogen and ammonia: HTS / CO₂ removal © John

Secondary reformer

Function:

Heat of reaction supplied by combustion

Technology used

Secondary reformers

Secondary reformer - Differences

Hydrogen

- Hydrogen plants fire with oxygen
 Stoichiometric
- N_2 is not required in the process

Ammonia

- Ammonia Plants fire with air
 - Adds O_2 and N_2
- N_2 is inert in secondary, shifts, CO_2 removal, and methanation
- N₂ injection point for NH₃ synthesis

Methanol

- Methanol plants fire with oxygen
 Excess
- Can be parallel or replace SMR
- Generates ideal stoichiometric ratio in parallel to primary
- Lower carbon intensity than SMR

Shift

Function:

Convert CO to CO₂ (1)

2 Increase H₂ make

Technology used

How:

- High temperature shift (HTS)
 - Fe based catalyst •
- Low temperature shift (LTS)
 - CuZn based catalyst •
- Medium temperature shift (MTS) ٠
 - CuZn based catalyst •

Shift

High temperature shift (HTS)Low temperature shift (LTS)Medium temperature shift MTS)

Each technology has different:

- Operating temperatures
- Resistance to poisoning
- Expected life
- Catalyst reduction and start-up procedures

High temperature shift - Differences

Hydrogen

- Mid to high exit temperature
- Hydrogen versus export steam balance
- Convert CO to CO₂ for easier removal
- CO slip dictated by PSA

Ammonia

- Higher inlet and exit temperature
- DP growth rate importance
- Above design rate operations
- Improved efficiency of downstream reactions
- Steam start up typical

Methanol

• N/A

Medium temperature shift - Differences

Hydrogen

- Lower S/C than HTS
- Improved efficiency of PSA
- Requires 2-3% less NG consumption for the same hydrogen production

Ammonia	Methanol	
• Not frequently used	• N/A	

Preferred for low S/C flowsheets

Low temperature shift - Differences

Hydrogen

- Generation of more H₂
- Polishing step for CO conversion to CO₂

Ammonia

- Polishing step for CO conversion to CO₂
- Generation of more H₂

Methanol

• N/A

Hydrogen purification

Function:

1 Produce high purity hydrogen

2 Increase H₂ make

3 Convert CO to CO₂

Technology used

Hydrogen purification

Hydrogen purification- Differences

Hydrogen

- PSA generally used
- Production high purity hydrogen product

Ammonia

- Methanation generally used
- Protection of NH₃ syn catalyst by converting CO and CO₂ (poisons) to CH₄

Methanol

• N/A

Ammonia synthesis

Function:

Convert H₂ and N₂ (3:1) into ammonia in a high-pressure (1) loop

Technology used

Operating conditions

Possible unit operations	JM material?	Hydrogen operating temperature °F (°c)	Hydrogen operating pressure psig (barg)	Ammonia operating temperature °F (°C)	Ammonia operating pressure psig (barg)
Purification	Yes	302-752 (150 - 400)		302-752 (150 - 400)	
Pre-reformer	Yes	842-932 (450 - 500)		842-932 (450 - 500)	
Steam reformer	Yes	Inlet: 842- 1202 (450 - 650) Outlet: 1382- 1562 (750 - 850)		Inlet: 842- 1202 (450 - 650) Outlet: 1292-1562 (700 - 850)	
Secondary reformer	Yes		290-435 (20 - 30)	Inlet: 1292-1562 (700 - 850) Outlet: 1652-1832 (900 - 1000)	290-580 (20 - 40)
High temperature shift	Yes	608-662 (320 - 350)		644-716 (340 - 380)	
Low temperature shift	Yes	392 (200)		392 (200)	
CO ₂ removal	No	176 (80)		176 (80)	
Methanation	Yes	482-662 (250 - 350)		482-662 (250 - 350)	
Ammonia synthesis	Yes			662-968 (350 - 520)	1160-5076 (80 - 350)

© Johnson Matthey PLC, 2024

Key reactions

Purification:	Organic sulphur + $H_2 \leftrightarrow H_2S$ + Hydrocarbon RCl + $H_2 \leftrightarrow HCl$ + RH
Reforming:	$CH_4 + H_2O \leftrightarrow CO + 3H_2 (\Delta H = +206 \text{ kJ/mol})$
Water gas shift:	$CO + H_2O \leftrightarrow CO_2 + H_2$ ($\Delta H = -41 \text{ kJ/mol}$)
Combustion:	$2H_2 + O_2 \rightarrow 2H_2O$ $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$
Methanation:	CO + 3H ₂ ↔ CH ₄ + H ₂ O (Δ H = -206 kJ/mol) CO ₂ + 4H ₂ ↔ CH ₄ 2H ₂ O (Δ H = -165 kJ/mol
Methanol synthesis:	$CO_2 + 3H_2 \leftrightarrow CH_3OH + H_2O$ ($\Delta H = -50 \text{ kJ/mol}$)
Ammonia synthesis:	$N_2 + 3H_2 \leftrightarrow 2NH_3 (\Delta H = -92 \text{ kJ/mol})$

