

JOHNSON MATTHEY

HYDROGEN & SYN GAS TECHNICAL TRAINING SEMNAR

FAILURE MECHANISMS & INSPECTION TECHNIQUES IN STEAM METHANE REFORMERS

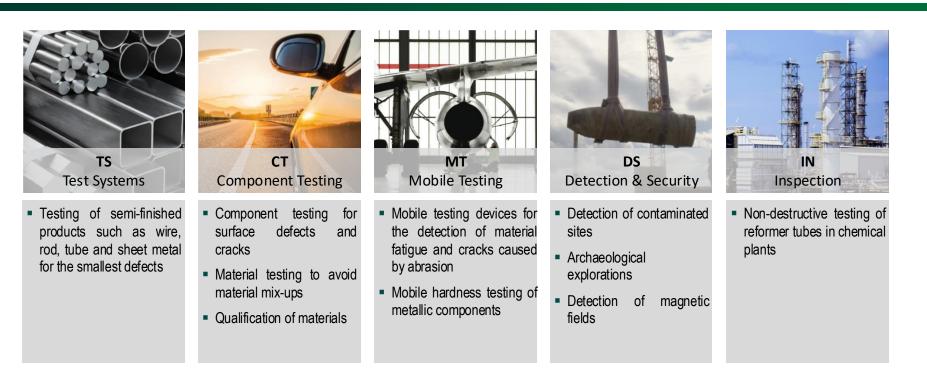
NOVEMBER 5TH - 7TH, 2023

TEMPE, ARIZONA, UNITED STATES

FOERSTER - MAKING QUALITY VISIBLE

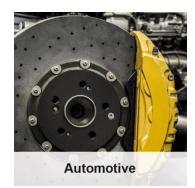
- Innovative Processes
- Reliable Products
- Technology Leader
- System Partner
- Solution Provider

Employees


600 Worldwide

Export 80 % Annual Revenue
> 100 Mio. EUR

FIVE SPECIALIZED BUSINESS UNITS



FOERSTER - INDUSTRY EXPERTISE

Metals Industry

Aeronautics & Aerospace

Medical Technology

Geophysics

Oil & Gas Industry

Fasteners & Connectors

OUR MOST IMPORTANT MEASURING AND TESTING METHODS

Eddy Current Technology	••»	Testing of metallic parts for defects like cracks, voids, and other defects
Magnetic Inductive Technology	••»»	Determination of the material properties of semi-finished products, soft magnetic materials, hard metals and components using the hysteresis curve
Ultrasonic Technology	••»»	Detection of defects and inhomogeneities in plates and tubes as well as wall thickness measurement for tubes
Magnetic Flux Leakage Technology	••»	Testing of metallic semi-finished products for surface defects using magnetic flux
Heat Flux Thermography	••»»	Testing of steel billets and -tubes for surface defects by infrared cameras
Magnetometer Technology	••»»	Measuring disruptions in the Earth's magnetic field caused by ferromagnetic objects
UCI Hardness Method	••»»	Minor-destructive, mobile hardness measurement of metallic materials

TOPICS TO BE DISCUSSED

- Foerster Group / MP MP merged with the Foerster Group in January 2021
- Foerster Group / MP Activities / Services Institut Dr. Foerster GmbH & Co. KG (IFR)
- Latest Acquisitions are US Thermal Technology (USTT) & Quest Lotis & Mantis Technology
- External Inspection of Reformer Tubes Laser Eddy-current Outside (LEO-SCAN)
- Internal Inspection of Reformer Tubes Laser Eddy-current Inside (LEO-iScan)
- Failures Cause and Effect Relations
- Baseline Inspection
- Inspection Results & Documentation
- Remaining Life Assessement
- Summary

FOERSTER GROUP

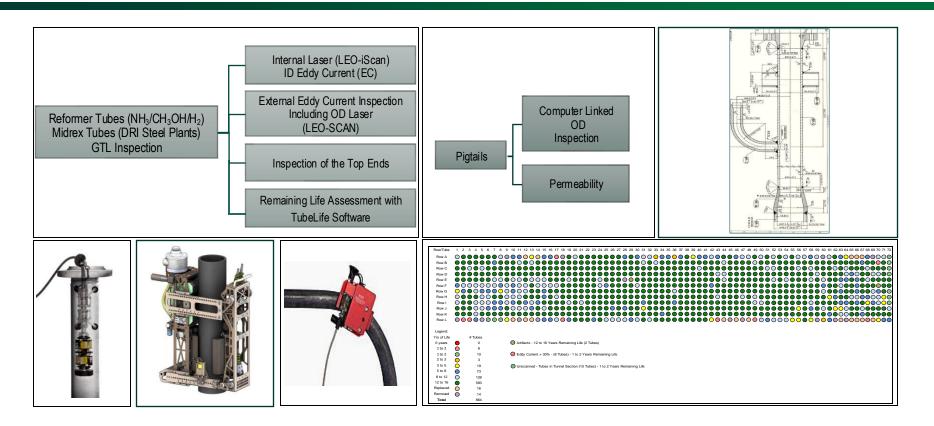
History: - 1950 Prof. Foerster developed the scientific basis of the electromagnetic test methods

- 1963 the first magnetic field measuring equipment from Foerster was installed in a satellite. The Mariner II was researching the magnetic field of the planet Venus using this technology.
- There is also a Foerster probe on the moon.
- Professor Foerster received the highest distinction from NASA in 1992 for his work. (www.foerstergroup.de/History)

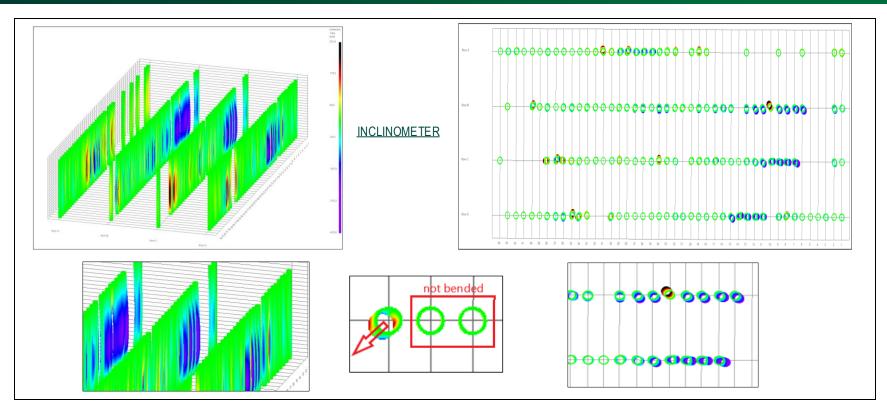
FRIEDRICH FOERSTER

FOERSTER GROUP

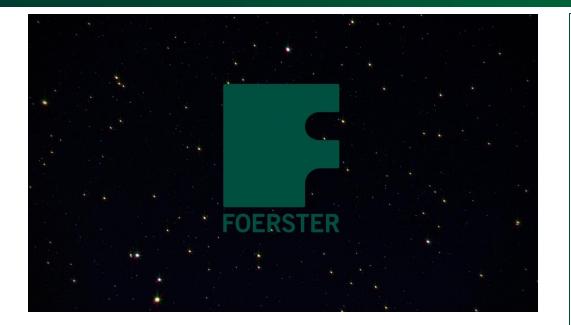
Head Office, in Reutlingen, Germany


2024

NDT SERVICES FOR STEAM METHANE REFORMERS



LATEST DVELOPMENTS FOR REFORMER TUBE TESTING



NDT SERVICE FOR STEAM METHANE REFORMERS REFORMERS

Global contracts with companies like Air Liquide, Linde / Praxair, BAPCO, OQ, OCI, Air Products. Foerster accounts for more than 85% of the world market share on Reformer Tube Testing.

- 400 Customers
- ➢ 60 Countries
- More Than 200 Inspections Annually

Shell, Chevron, ExxonMobil, BPAmoco, ConocoPhillips, Valero, PCS, Air Liquide, Air Products, Praxair, Linde, Repsol, Metor, Petronas, Syncrude, Suncor, BASF, IPSL, Bayer, Petrobras, CF Industries, Agrium, Koch, S-Oil, SK Energy, Formosa, Pemex, Celanese, Yara, Methanex, Supermetanol, etc..

Sabic, Safco, Al Bayroni, Ar Razi, IBN Sina, Hadeed, Maaden, Aramco, GPIC, Qafco, Sipchem, OPSL, Salalah Methanol, Qafac, Omifco, Sirte Oil, Mopco, Midor, Abu Qir, AMOC, AlexFert, Helwan, EBIC, OryxGTL, Qasco, KNPC, PIC, SUICI, Fertil, Takreer, Kharg, Fanavaran, Chemanol, Petro Rabigh, Sorfert, etc.

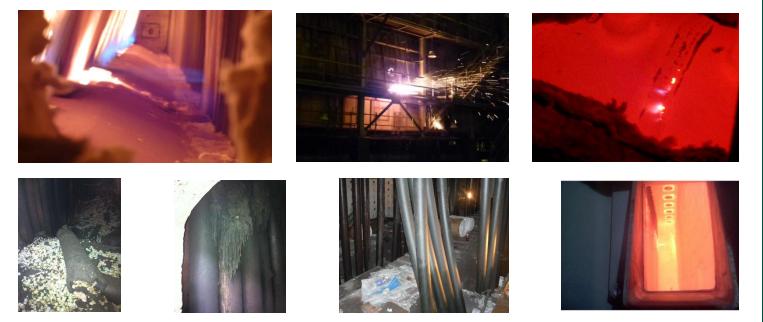
MRPL, BORL, IFFCO, Pupuk Kaltim, Kaltim Methanol, Kaltim Perna, Pupuk Kujang, Pertamina (Dumai / Balongan / Balikpapan), Panca Amara Utama, Formosa, JXTG, etc..

SKW, BASF, Bayer, Lotos, Grupa Azoty, PKN Orlen, PCK Schwedt, Degussa, Evonik, Caloric, Hellenic Refinery, Holborn, Solvay, Gunvor, Miro, Shell Wessling, etc..

NDT SERVICE FOR STEAM METHANE REFORMERS

- Burner Operation
- Catalyst Issues
- Spring Support Issues
- Flue Gas Distribution Issues
- > Overheating Issues
- TMT Related Issues
- > Tunnel Brick Proximity
- > Tunnel Brick Design
- ➢ Etc.

LEO-SCAN EXTERNAL INSPECTION OF REFORMER TUBES



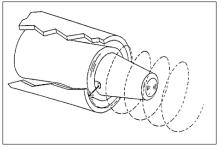
MP Successful External Eddy Current Technique

In Service Tube and Header Failures

LEO-SCAN EXTERNAL INSPECTION OF REFORMER TUBES

INSTITUT DR. FOERSTER GMBH - NDT INSPECTION SYSTEMS AND SERVICE

REFORMER INTERNAL TUBE INSPECTION (LOTIS)

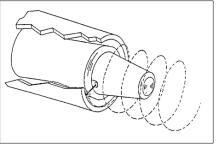


MANTIS & LOTIS TECHNOLOGY

LOTIS® Examination Method

- Laser-Optic Tube Inspection System (LOTIS) with laser-mapping probe.
- The laser-based surface mapping system utilized by LOTIS is based on the principle of optical triangulation.
- LOTIS was originally designed for the inspection of military marine boilers and has been used for regular inspections since 1987.
- The probe (see below) projects a small laser beam (typically 0.5 mm (0.020 in.) in diameter) onto the target surface at near normal incidence.
- Receiving optics focus this reflection of light on a single-axis, lateral-effect photo detector.
- Because the transmitting and receiving optics are at different angles, changes in target proximity are converted to lateral movement on the photo detector.

REFORMER INTERNAL TUBE INSPECTION (LOTIS)



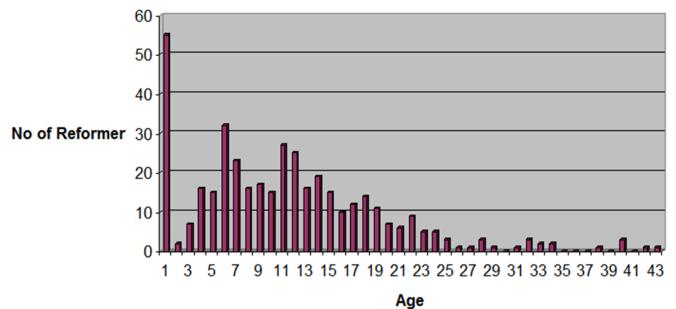
MANTIS & LOTIS TECHNOLOGY

LOTIS® Examination Method

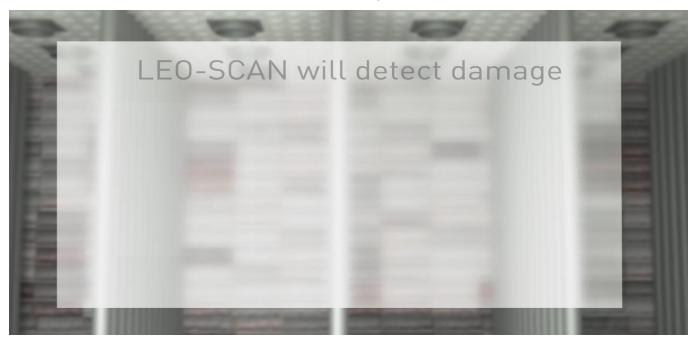
- By calibrating the system for non-linearities that are introduced by the optical configuration and the photo detector, the sensor can provide precise radius measurements of the inside surface of the tube at each sample point.
- The optics housing rotates at 1,800 rpm, depending on the desired mapping resolution, and is drawn through the tube so that a helical sampling pattern is generated (see picture).
- The system typically samples several hundred thousand data points during an inspection and therefore, a very detailed map of the inside surface of the tube is generated.
- The LOTIS produces results in several formats including diametrical line graphs, 3-Dimensional (3D) single tube or full reformer tube color graphics.
- Upon completion of the LOTIS inspection of each tube, the diametrical data is immediately ready for viewing and analysis. No post processing is necessary.

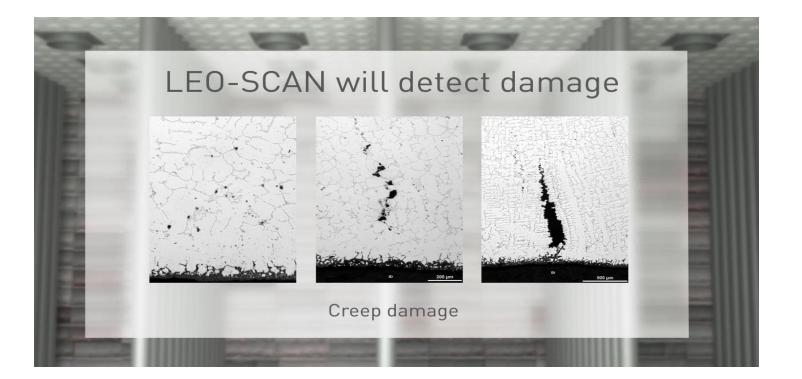
LEO-SCAN EXTERNAL INSPECTION OF REFORMER TUBES

LEO - SCAN (Laser Eddy Current Outside Scanning of Reformer Tubes)


- Proven, Accurate and Reliable
- ► EC probes penetrate up to 23.5 mm
- > Dual axis laser measurement
- > Starting point is 20 mm from the floor
- > High Speed 250 tubes / shift
- Inspection with or without catalyst

LEO-SCAN EXTERNAL INSPECTION OF REFORMER TUBES


Average Age of the Tubes in 400 Reformers Sampled Since 2012



Creep Damage

Pos1 10610
Pos2 11883
Dist -1273
OD1 162.0
OD2 157.1
Var 3.1
Snep Mode

35% ECT & 3.1% OD

CRACKING AND EXPANSION CORRELATED AT NORMAL CREEPING

mm

mm

mm

mm

mm

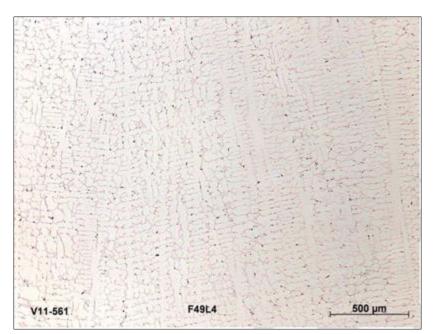
C Y1 C X2 C Y2 C Y3 C OD C OD90

Clear

Figure 1. Photomicrograph of creep damage near the ID of Terra tube A-3 Magnification 25 X $$\rm Etchant: Oxalic Acid$$

CREEP DAMAGE OCCURS OVER DESIGN LIFE TIMESCALES!

VGB-TW-507 - MICROSTRUCTURE RATING CHARTS FOR EVALUATING CREEP DAMAGE

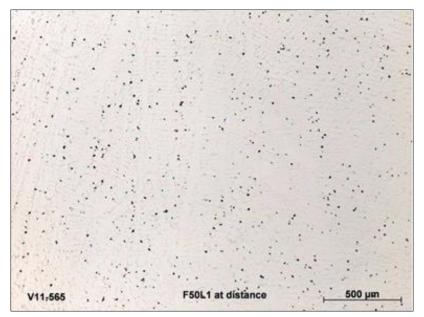

Class 0	: As received, without thermal service load;
Class 1	: Creep exposed, without cavities;
Class 2A	: Isolated cavities;
Class 2B	: Numerous cavities without preferred orientation;
Class 3A	: Numerous oriented cavities;
Class 3B	: Chains of cavities and/or grain boundary separations
Class 4	: Micro cracks;
Class 5	: Macro cracks.

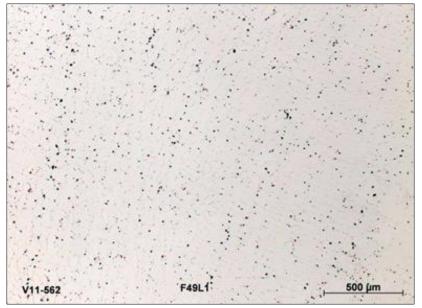


PROGRESSION OF CREEP DAMAGE IN CATALYST TUBE MICROSTRUCTURES

CREEP DAMAGE CLASSIFICATION

CREEP CLASSIFICATION - NO CREEP DAMAGE - CLASS 1

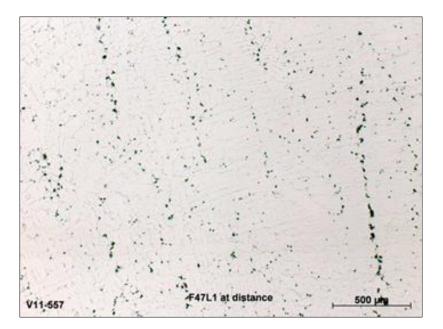

CREEP CLASSIFICATION - CREEP DAMAGE (BLACK SPOTS) - CLASS 2A

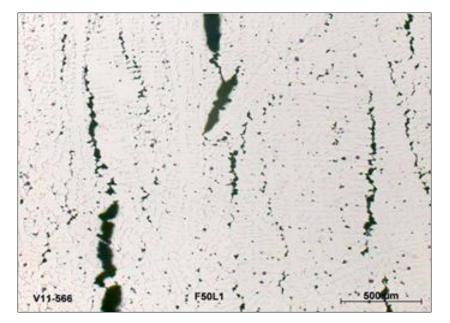


PROGRESSION OF CREEP DAMAGE IN CATALYST TUBE MICROSTRUCTURES

CREEP DAMAGE CLASSIFICATION

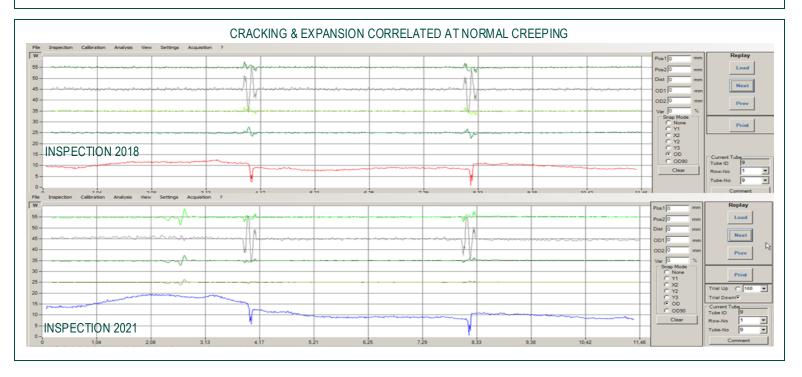
CREEP CLASSIFICATION - CREEP DAMAGE (BLACK SPOTS) - CLASS 2B


CREEP CLASSIFICATION - CREEP DAMAGE (BLACK SPOTS) - CLASS 3A

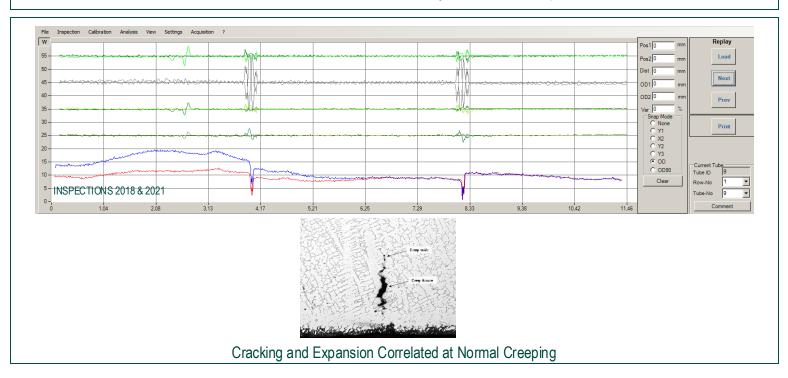


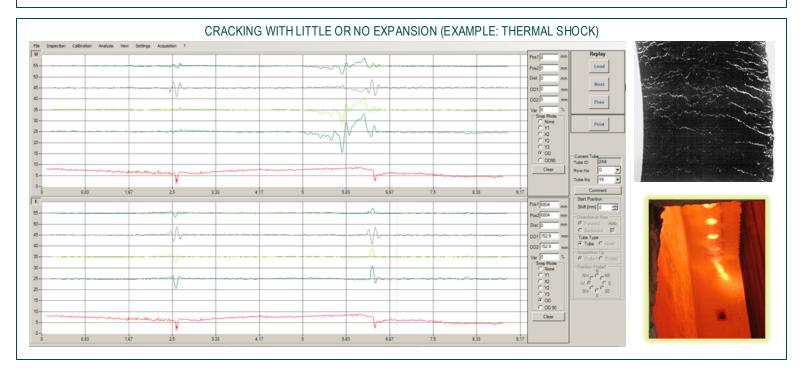
PROGRESSION OF CREEP DAMAGE IN CATALYST TUBE MICROSTRUCTURES

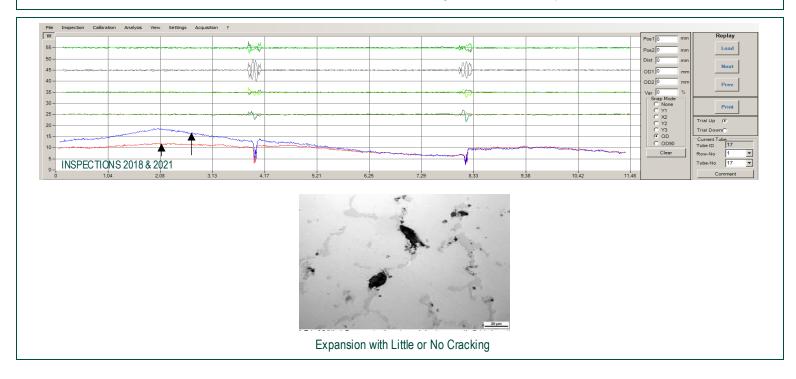
CREEP DAMAGE CLASSIFICATION

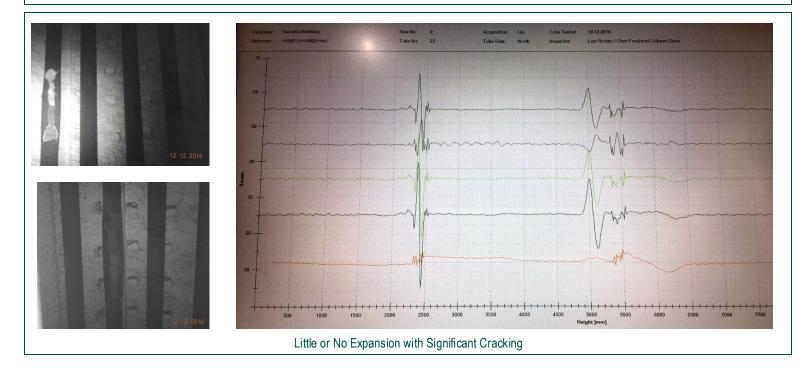

CREEP CLASSIFICATION - ALIGNED CAVITIES, MICRO CRACKS - CLASS 3B - 4

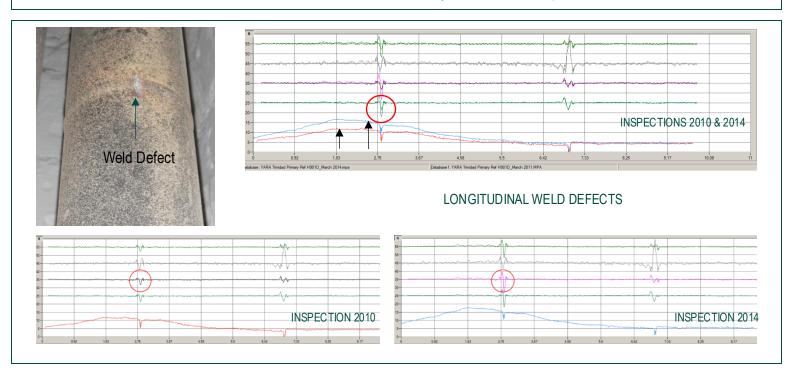
CREEP CLASSIFICATION - MACRO (OPEN) CRACKS - CLASS 5

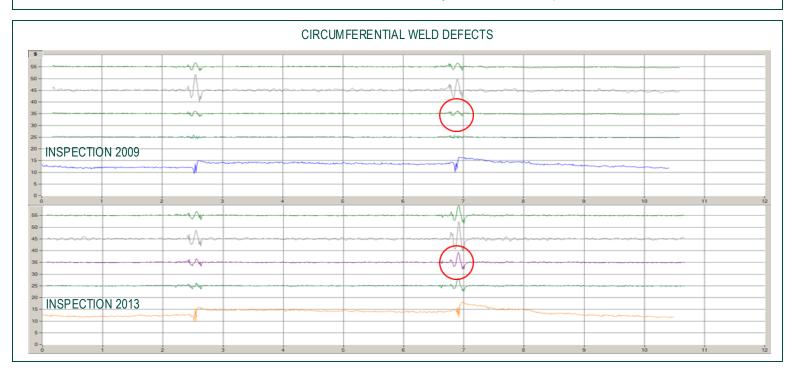


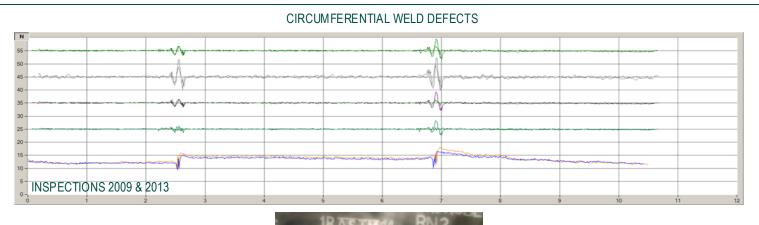


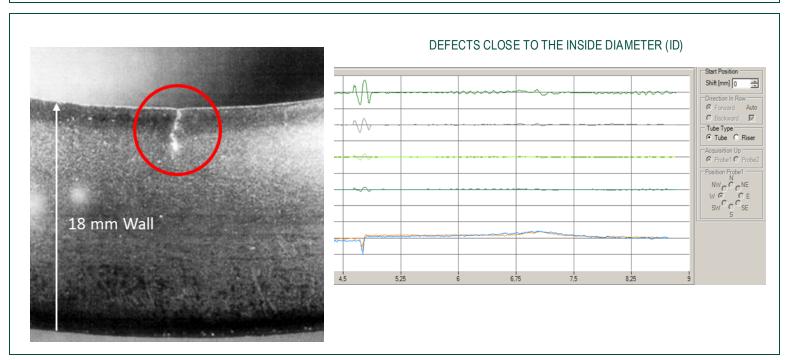


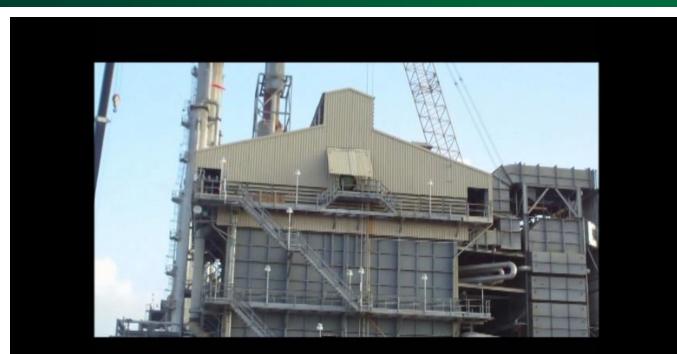




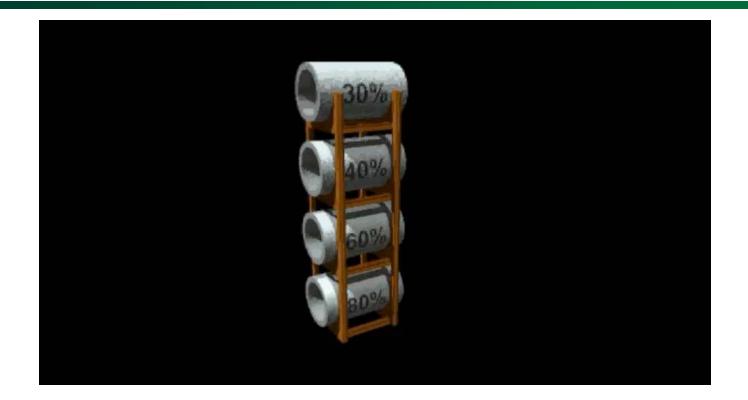




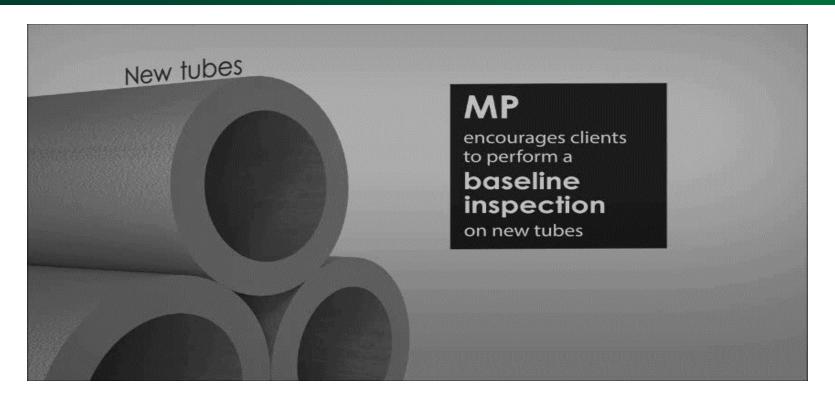


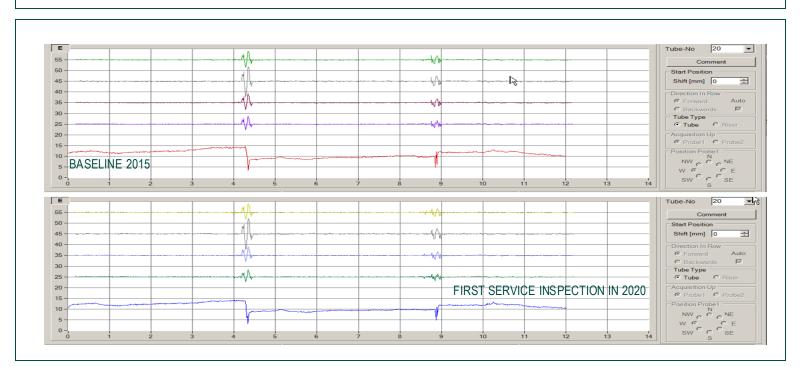


LEO-SCAN EXTERNAL INSPECTION OF REFORMER TUBES



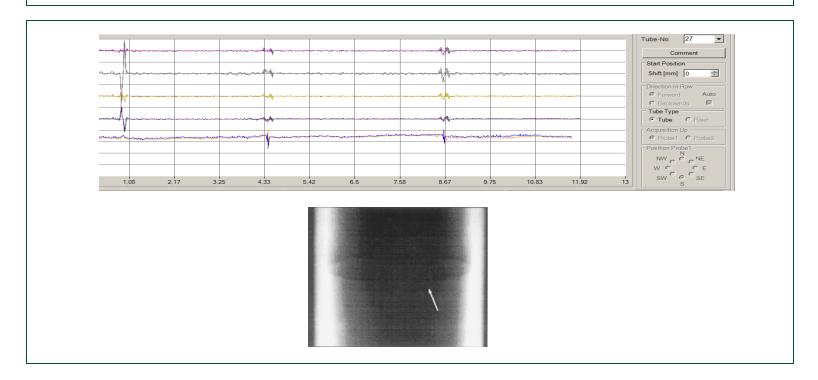
LEO-SCAN EXTERNAL INSPECTION OF REFORMER TUBES





INSIDE DIAMETER / OUTSIDE DIAMETER DATA

SEVERAL INSPECTIONS OVERLAYED - NO DAMAGE

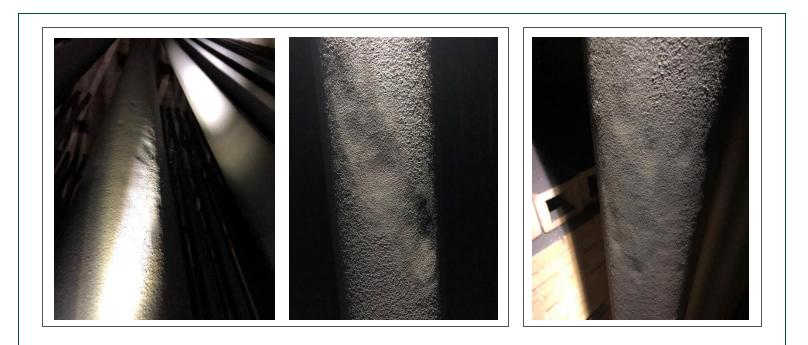


SEVERAL INSPECTIONS OVERLAYED - DAMAGE OBSERVED

Foerster Successful External Eddy Current Technique

Manufacturing Anomalies

Manufacturing Anomalies



Foerster Successful External Eddy Current Technique

Manufacturing Anomalies

Manufacturing Anomalies

Outlet Pigtail Damage

Outlet Pigtail Damage

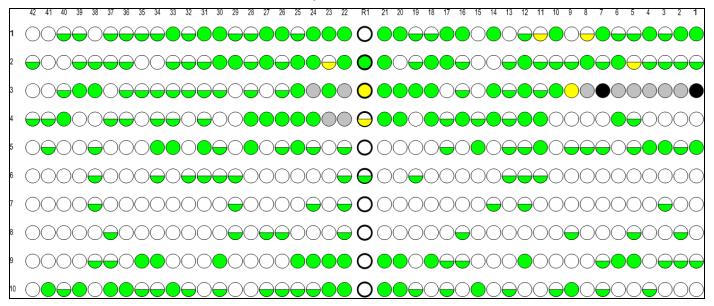
Outlet Pigtail Damage

Outlet Pigtail Damage

Outlet Pigtail Damage

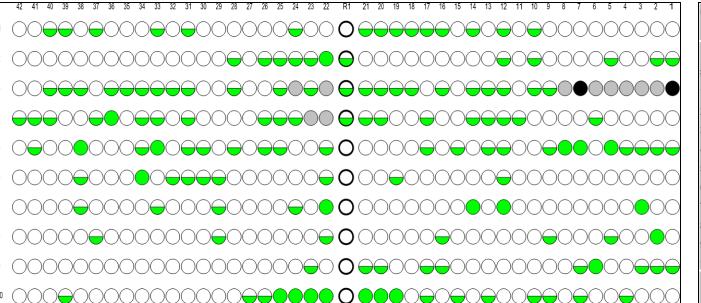
Outlet Pigtail Damage

Documentation


Da	ita-	Sh	nee	t		Customer	:	мми	имм						Date :		08	.09.20	014				٦		1
						Unit :		Refo	rmer	F-10	1				Inspec	ctor:	MN	имм	И			Mag	netiso	he Prüfanla	gen GmbH
TU POSI				EFECT PO in CENTIME				in	CR % of th	ACK(S		SS				сгее	T l p relate	UBE OU ed OD v				in [%]			EASE last inspection
ROW	тиве	=	SIDE / E	SECTION	DISTANCE	sm all indication	30%	35%	40%	45%	50%	> 50%	Artefact	crack visible	0.5 - 0.9%	1.0 - 1.4%	1.5 - 1.9%		2.5 - 2.9%		> 3.5%			CRACK	EXPANSION
A	1:	2		1	1		(1	[х					1	1	1	Ĭ		
Α	1:			1								Ĭ			x	1		ĺ	ĺ						
Α	3			1											x	ļ									0,3%
Α	3		x	1	-375			x				ļ			x	ļ	ļ	ļ	ļ					new	
Α	4	1 x	x	1	-250		X	ļ	ļ											ļ	ļ	ļ	ļ	>5%	
A	43	2	x	2	28	x																			
В	(9 x	x	2	64,0			1				<u>.</u>	x				1			1		1		1	
В	(9	x	2	129,4			1				<u>.</u>	x							1	1	1		1	
В	1:	2		1	1			1	İ					1	x					1	1	İ	1		0,6%
В	19	9 x	x	1	-366	x		1	1					1	х					1	1	1	1	new	0,2%
В	24	4	X	1	-347	x						Î				Î	1	1	1					new	
В	3	1	x	1	-370	x						1			x	1	1	1	1					new	0,5%
В	3	2 X	x	1	-369	x						1				1	1	1	1					new	
В	34	4 x	x	1	-368	x		1	1						x					1	1	1	1	new	0,3%
В	3	5 x	x	1	-371	x		1	1						х					1	1	1	1	new	0,6%
В	3	7		1											x										1
С	1	2 x	x	1	-371	x																		new	
С		4 x	X	1	-372	x																		new	
С		9	X	2	160,4	x						L				ļ									
С	1:		X	1	-368	x						L			x	L	ļ	L	L					new	0,4%
С	1:		X	1	-362			X	L											ļ	L	L	1	new	0,6%
С	10		x	1	-368	x			ļ					ļ	x					ļ	L	l		new	0,4%
С	3			1								ļ			x	Į	ļ	L	ļ						
С	34		x		-364		x					ļ			x	ļ		ļ	ļ					new	
С	3	7		1	-368	x		ļ	ļ						x					ļ	Į	ļ			0,6%

Documentation

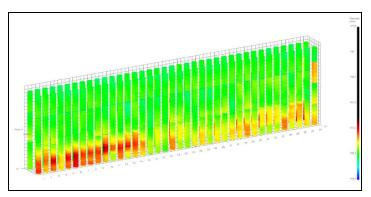
Eddy Current Indications


Color Definition							
#	Colors	Cracks	Expansions				
1		no indication	0 - 0.4%				
2		small indication	0.5 - 0.9%				
3		30%	1.0 - 1.4%				
4		35%	1.5 - 1.9%				
5		40%	2.0 - 2.4%				
6		45%	2.5 - 3.0%				
7		50%	3.0 - 3.5%				
8		> 50%	> 3.5%				
9		open crack	open crack				
10		not inspected	not inspected				

Documentation

Expansion Measurement




Со	lor Defini	tion	
#	Colors	Cracks	Expansions
1		no indication	0 - 0.4%
2		small indication	0.5 - 0.9%
3		30%	1.0 - 1.4%
4		35%	1.5 - 1.9%
5		40%	2.0 - 2.4%
6		45%	2.5 - 3.0%
7		50%	3.0 - 3.5%
8		> 50%	> 3.5%
9		open crack	open crack
10		not inspected	not inspected

Documentation

Documentation

REFORMER TUBE FITNESS FOR SERVICE

FITNESS FOR SERVICE (FFS) - API579

What is a Fitness For Service Assessment?

A quantitative engineering evaluation that is performed to demonstrate the structural integrity of an in-service component that may contain a flaw or damage.

There are three levels of assessment techniques and acceptance criteria:

- Level 1: Is intended to provide conservative screening criteria that can be used with a minimum amount of inspection or component information.
- Level 2: Inspection information similar to that required for a Level 1 assessment are needed, however, more detailed calculations are used in this evaluation.
- Level 3: The most detailed inspection and component information is typically required, and the recommended analysis is based on experimental techniques.

REFORMER TUBE FITNESS FOR SERVICE

CONTACT DETAILS

TS: Mr. Thomas Hahn Thomas.Hahn@foerstergroup.com +49 7121 140-528 +49 171 7677934

DS:

Mr. Kolja Kramny Kolja.Kramny@foerstergroup.com +49 7121 140-397 +49 160 2564245

IN: Ms. Kara Ellis (Chicago, Illinois) Kara.Ellis@foerstergroup.com +1 815-979-3238 CT Mr. Michael Pfaller Michael.Pfaller@foerstergroup.com +49 7121 140-65 +49 151 68412296

IN: Mr. Edgar Remedios (Houston, Texas) Edgar.Remedios@foerstergroup.com +1 281-705-6243 MT Mr. Volker Hiller Volker.Hiller@foerstergroup.com +49 7121 140-657 +491702914098

IN: Mr. Christopher Baczek christopher.baczek@foerstergroup.com +48 606 802 028

Thanks for your Attention!