Clear All

Showing results 601-639 / 639

Pd-70

CAS Number: 14024-61-4

Explore

Pd-101

CAS Number: 14221-01-3

Explore

Pd-107

CAS Number: 851232-71-8

Explore

Ru-90

CAS Number: 50982-12-2

Explore

Ru-120

Tetrachlorobis(4-cymene)diruthenium (II) | CAS: 52462-29-0

Explore

Rh-110

CAS Number: 15956-28-2

Explore

Ir-93

CAS Number: 12112-67-3

Explore

Rh-120

CAS Number: 12354-85-7

Explore

Karstedt catalysts

Explore our range of Karstedt catalysts.

Explore

AlaDH-6

Alanine dehydrogenase (AlaDH) catalyses the reductive amination of pyruvate to L-alanine.

Explore

C=C double bond reduction kit

This kit contains 7 ene reductase (ENE) enzymes for the reduction of C=C double bonds in the presence of an electron withdrawing group (EWG).

Explore

Ir-94

CAS Number: 41396-69-4 | [IrCl(COD)Phen] · THF

Explore

Rh-95, rhodium (acetylacetonato)(1,5-cyclooctadiene)

Rhodium(2,4-pentanedionate)(1,5-cyclooctadiene) | CAS: 12245-39-5

Explore

Ru-721

CAS Number: 850424-32-7

Explore

Catalyst enhancement FCC additive

CAT-AID, Johnson Matthey’s catalyst enhancement additive, is designed to overcome many of the shortcomings related to deactivation of base catalyst from metal contaminants such as vanadium, nickel, iron, calcium, sodium, and potassium.

Explore

10R394

Explore

10R487

Explore

5R424

Explore

A402028-10 |10% Palladium/Carbon

10% Palladium/Carbon

Explore

A405028-5

Explore

A405032-5

Explore

A503023-5

Explore

B312099-5

Explore

10R39

Explore

1R128M

Explore

A302011-5

Explore

Butanediol BDO THF GBL DMS process, Hydrogenolysis and Esterification technology

Johnson Matthey is the leading technology provider for butanediol plants worldwide. The DAVY™ butanediol process can produce in a single reaction train, varying ratios of three products; 1,4 butanediol (BDO), tetrahydrofuran (THF), Di-methyl succinate (DMS) and gamma butyrolactone (GBL). Hydrogenolysis is a reaction where hydrogen is added to a compound and breaks that compound’s bonds, forming two molecules as a result. Johnson Matthey's DAVY™ hydrogenolysis technology reacts hydrogen gas (H2) with a vapour-phase carbonyl compound. Esters are organic compounds characterized by the RCOOR’ functional group, and are most commonly derived from the reaction of carboxylic acids with alcohols.

Explore

Natural detergent alcohols process

Johnson Matthey has licensed the greatest number of plants worldwide for the production of natural detergent alcohols (NDA), also known as fatty alcohols.

Explore

PURACARE service

PURACARE tailored service is designed to take care of all aspects of operation, maintenance and absorbent/catalyst recycling for our global customers in the Gas Processing industry.

Explore

Oxidation technology

In terms of organic chemistry, oxidation is defined as a reaction which causes carbon to lose electron density. This can be caused by a carbon atom forming a bond with a more electronegative atom (e.g. oxygen, nitrogen), or breaking a bond with a less electronegative atom (e.g. hydrogen).

Explore

Propylene glycol process

Our DAVY™ glycerol to propylene glycol (GPG) process is a perfect fit for our DAVY biodiesel process as the by-product, glycerol, can be fed to an adjoining GPG plant.

Explore

Substitute natural gas (SNG) process

With over 20 years' experience, Johnson Matthey is the market leader in the supply of SNG catalysts and technology, with our DAVY™ licensed plants providing more than half of global SNG production.

Explore

Membrane electrode assembly (MEA)

MEA solutions for your fuel cell system.

Explore

Fischer Tropsch technology

Johnson Matthey have collaborated with BP to produce our proprietary fixed-bed Fischer Tropsch (FT) technology – a simple and robust system which forms the heart of our gas-to-liquids (GTL) process.

Explore

Health and safety

Explore

Oxo alcohols process

Johnson Matthey offers oxo-alcohol processes and a complete range of catalysts suitable for oxo-alcohol manufacture. The LP OxoSM technology is the world’s leading technology for use in the manufacture of oxo alcohols from olefins.

Explore