Clear All

Showing results 51-60 / 95

Aldolization technology

Aldolization is a key part of the oxo alcohols process where two aldehydes combine to produce a larger aldehyde which is then converted to an alcohol by hydrogenation.

Explore

Fischer Tropsch technology

Johnson Matthey have collaborated with BP to produce our proprietary fixed-bed Fischer Tropsch (FT) technology – a simple and robust system which forms the heart of our gas-to-liquids (GTL) process.

Explore

CATACEL SSR catalyst

Johnson Matthey’s CATACEL SSR tailored catalyst technology is a proven high performance, direct replacement catalytic solution for producing hydrogen from natural gas through the steam reforming process.

Explore

Hydroformylation technology

Hydroformylation is the process by which an olefin (alkene) reacts with syngas (CO and H2) to form an aldehyde. Also commonly known as the “Oxo” process, hydroformylation is the first step in the production of oxo alcohols with the intermediate aldehyde converted to an alcohol by hydrogenation.

Explore

Amination technology

Amines are compounds derived from ammonia and contain a nitrogen atom with a lone electron pair. Amination is the process by which an amine group is added to an organic compound.

Explore

Hydrogenolysis technology

Hydrogenolysis is a reaction where hydrogen is added to a compound and breaks that compound’s bonds, forming two molecules as a result. Johnson Matthey's DAVY™ hydrogenolysis technology reacts hydrogen gas (H2) with a vapour-phase carbonyl compound.

Explore

CANS novel reactors technology

Johnson Matthey has developed a novel DAVY™ reactor design that provides increased efficiency whilst significantly reducing vessel sizes, equipment count and catalyst volumes.

Explore

Dehydration technology

Johnson Matthey's fixed-bed DAVY™ dehydration technology underpins our dimethyl ether (DME) process, which uses methanol feed and is offered to our clients as an extension to our methanol flowsheets.

Explore

Ammonia synthesis catalysts

Johnson Matthey supplies both un-reduced and pre-reduced ammonia synthesis catalysts, based on more than 80 years' operating experience with ICI.

Explore

Steam reforming catalysts

Steam reforming is the reaction of methane (and other higher hydrocarbons) with steam in the presence of a catalyst to form carbon oxides and hydrogen. Read more on our pre reforming catalysts, primary reforming catalysts and secondary/ATR reforming catalysts.

Explore