Clear All

Showing results 81-88 / 697

Process optimisation

Through our exclusive partnership with ProSim we can enhance plant performance through diagnostics and optimisation of the entire nitric acid process.

Explore

Turbocharger and steam utilisation process

In most high power cost situations, a turbocharger is the preferred design with short payback on the extra investment.

Explore

Natural detergent alcohols process

Johnson Matthey has licensed the greatest number of plants worldwide for the production of natural detergent alcohols (NDA), also known as fatty alcohols.

Explore

Environmental oxidation process

Environmental concerns about industrial emissions to air and water have been continually growing. In response, Johnson Matthey has targeted key issues by applying our expertise in catalysts and catalytic technology.

Explore

New processes

Expansion of our DAVY™ process portfolio is a key element of our business strategy, and this is accomplished by a combination of in-house developments, acquisition and collaborative programmes.

Explore

Dimethyl formamide (DMF) process

Dimethyl formamide (DMF) is produced by reacting dimethylamine with carbon monoxide in the presence of a catalyst at low temperature and pressure in a specialised reactor. Johnson Matthey license the DAVY™ DMF process, which is well-proven commercially.

Explore

Monoethylene glycol (MEG) process

Our new process using proprietary catalyst developed by Johnson Matthey and East­man enables the production of MEG from methanol via formaldehyde. This offers a unique and exciting opportunity for methanol and/or formaldehyde pro­ducers who are interested in diversifying their product slate.

Explore

Methylamines process

Johnson Matthey's DAVY™ methylamines (MA) flowsheet is the most extensively licensed process of its kind in the world. As such, it is well-proven through extensive use across a majority of operating MA plants. We have continued to improve our process and today offer an improved derivative of our original design.

Explore