Clear All

Showing results 31-40 / 90

Amination technology

Amines are compounds derived from ammonia and contain a nitrogen atom with a lone electron pair. Amination is the process by which an amine group is added to an organic compound.

Explore

Ammonia cracking catalysts

Ammonia cracking is the process by which ammonia is decomposed towards hydrogen and nitrogen over a catalyst (based on base or pgm metals).

Explore

iUFC process

FORMOX™ plants are available for integrated direct production of UFC (urea formaldehyde concentrate).

Explore

Methanol synthesis catalysts

Methanol synthesis is the formation of methanol from carbon oxides and hydrogen. It is catalysed by copper-zinc catalysts. KATALCO 51-series methanol synthesis catalysts are key to the methanol technologies offered by Johnson Matthey.

Explore

Environmental catalysts

Environmental concerns about industrial emissions to air and water have been continually growing. In response, Johnson Matthey has targeted key issues by applying our expertise in catalysts and catalytic technology.

Explore

Biorenewable catalysts

Following recent environmental legislation and an increasing awareness on the part of product manufacturers for sustainable products, the need to replace non-renewable fossil raw materials is more apparent than ever.

Explore

Sulphur removal absorbents

Johnson Matthey’s range of PURASPEC fixed bed absorbents is proven in numerous markets as a simple and effective means of achieving sulphur removal from natural gas.

Explore

Formaldehyde plant range

The latest FORMOX™ plant design is a step further in the evolution of our plant technology.

Explore

Turbocharger and steam utilisation process

In most high power cost situations, a turbocharger is the preferred design with short payback on the extra investment.

Explore

Methanol process

Johnson Matthey is one of the world’s leading methanol technology and catalyst providers, with over half of the world’s licensed methanol plants based on our DAVY™ technology.

Explore