Clear All

Showing results 1-20 / 23

Methanol

Methanol is an important and highly versatile chemical used to produce hundreds of every-day products which improve our quality of life, such as plywood, paint and adhesives. It is also a clean-burning and safe alternative to conventional fuels and a potential enabler for decarbonization.

Explore

Waste to methanol

Waste is a source of valuable carbon and hydrogen that can be transformed into methanol. This reduces the amount of waste destined to landfill and incineration and replaces natural gas and coal-based feedstocks, enabling the production of more sustainable fuels and chemicals with a lower carbon footprint.

Explore

CO2 to methanol

Methanol produced using electrolytic hydrogen is an attractive alternative and potentially carbon neutral fuel. It can be directly used as a road and maritime transportation fuel or as a low carbon intensity intermediate to produce Sustainable Aviation Fuel (SAF) or green gasoline.

Explore

PRIMARY Methanol technology

Our well-established PRIMARY Methanol process is an oxygen-free solution based on the use of a steam methane reformer (SMR). It is the technology of choice when the feedstock has a high CO2 content or a source of CO2 import is available, delivering up to 5,600 MTPD of methanol in a single train without an air separation unit.

Explore

FLEXI Methanol technology

Our FLEXI Methanol process is a robust technology for medium to large capacity plants which delivers consistent, high performance and which is used today in the most energy efficient methanol plants in the world.

Explore

PRECISION Methanol technology

Our PRECISION Methanol process is based on autothermal reforming, and it is the best solution for lighter feedstocks with low levels of CO2 and inert gases. It achieves high natural gas efficiency without the need to import H2, delivering low OPEX, economy of scale and the fastest pay-back time for medium to large methanol capacities.

Explore

JM Levo Methanol

A digital platform providing customers with insightful analytics based on JM expertise and advanced data modelling, enabling more agile and better informed decisions.

Explore

Methanol and ammonia co-production

Partnering with KBR under a global strategic alliance, we license a ground-breaking ammonia-methanol co-production solution which combines our market leading technologies: Johnson Matthey’s PRIMARY Methanol process and KBR’s PURIFIER ammonia technology.

Explore

SWITCH Methanol technology

Johnson Matthey’s award-winning SWITCH Methanol process delivers minimal direct CO2 emissions without the additional investment, running costs and complexity of carbon capture. It is ready to receive renewable electricity and it enables methanol producers to meet their sustainability goals as we transition to a low-carbon economy.

Explore

Methanol process

Johnson Matthey is one of the world’s leading methanol technology and catalyst providers, with over half of the world’s licensed methanol plants based on our DAVY™ technology.

Explore

low-carbon-solutions

Johnson Matthey's low carbon solutions: Decarbonising the installed asset base with ready-now solutions

Explore

Synthesis technology

Johnson Matthey's DAVY™ synthesis technologies convert syngas (CO, CO2 & H2) to methanol creating exothermic reactions that have a limited conversion rate, so several passes through a reactor are required to produce sufficient methanol.

Explore

Dimethyl ether process

DME is an alternative automotive fuel solution and can be used as fuel in diesel engines, gasoline and gas turbines. Johnson Matthey offers the DAVY™ DME process, which uses methanol feed, as an extension to our methanol flowsheet.

Explore

Dehydration technology

Johnson Matthey's fixed-bed DAVY™ dehydration technology underpins our dimethyl ether (DME) process, which uses methanol feed and is offered to our clients as an extension to our methanol flowsheets.

Explore

Reforming technologies (ATR, GHR, SMR)

Johnson Matthey's DAVY™ reforming technologies transform natural gas into synthesis gas (syngas, predominantly CO, CO2 and H2) . Syngas is a feedstock for the DAVY gas to liquids (GTL) and methanol processes.

Explore

Monoethylene glycol (MEG) process

Our new process using proprietary catalyst developed by Johnson Matthey and East­man enables the production of MEG from methanol via formaldehyde. This offers a unique and exciting opportunity for methanol and/or formaldehyde pro­ducers who are interested in diversifying their product slate.

Explore

Natural detergent alcohols process

Johnson Matthey has licensed the greatest number of plants worldwide for the production of natural detergent alcohols (NDA), also known as fatty alcohols.

Explore

Methanol synthesis catalysts

Methanol synthesis is the formation of methanol from carbon oxides and hydrogen. It is catalysed by copper-zinc catalysts. KATALCO 51-series methanol synthesis catalysts are key to the methanol technologies offered by Johnson Matthey.

Explore

FORMOX formaldehyde process

Johnson Matthey license the FORMOX™ formaldehyde process, with plant capacities ranging from 70 MTPD to nearly 840 MTPD. The process enables the production of concentrations up to 55%, which means reduced costs of downstream production, storage and transport.

Explore

Low temperature shift catalysts

The latest products in our low temperature shift range combine high activity and poisons resistance with excellent selectivity to give low methanol by-product formation.

Explore