Clear All

Showing results 61-80 / 95

Secondary reforming catalysts

The range of KATALCO QUADRALOBE secondary reforming catalysts provide both high stability and high activity, allowing us to offer the best mix of activity, pressure drop and high temperature stability for your application.

Explore

Ammonia cracking catalysts

Ammonia cracking is the process by which ammonia is decomposed towards hydrogen and nitrogen over a catalyst (based on base or pgm metals).

Explore

Chloride removal absorbents

View Johnson Matthey’s PURASPEC CLEAR chloride absorbents for the oil and gas industry.

Explore

Purification by catalytic oxidation

Our PURAVOC™ technology provides a catalytic oxidation solution to remove a broad variety of volatile organic compounds (VOCs), oxygen, hydrogen and carbon monoxide from various gas stream sources.

Explore

PRECISION Methanol technology

Our PRECISION Methanol process is based on autothermal reforming, and it is the best solution for lighter feedstocks with low levels of CO2 and inert gases. It achieves high natural gas efficiency without the need to import H2, delivering low OPEX, economy of scale and the fastest pay-back time for medium to large methanol capacities.

Explore

Waste to methanol

Waste is a source of valuable carbon and hydrogen that can be transformed into methanol. This reduces the amount of waste destined to landfill and incineration and replaces natural gas and coal-based feedstocks, enabling the production of more sustainable fuels and chemicals with a lower carbon footprint.

Explore

CO2 to methanol

Methanol produced using electrolytic hydrogen is an attractive alternative and potentially carbon neutral fuel. It can be directly used as a road and maritime transportation fuel or as a low carbon intensity intermediate to produce Sustainable Aviation Fuel (SAF) or green gasoline.

Explore

SWITCH Methanol technology

Johnson Matthey’s award-winning SWITCH Methanol process delivers minimal direct CO2 emissions without the additional investment, running costs and complexity of carbon capture. It is ready to receive renewable electricity and it enables methanol producers to meet their sustainability goals as we transition to a low-carbon economy.

Explore

FLEXI Methanol technology

Our FLEXI Methanol process is a robust technology for medium to large capacity plants which delivers consistent, high performance and which is used today in the most energy efficient methanol plants in the world.

Explore

PRIMARY Methanol technology

Our well-established PRIMARY Methanol process is an oxygen-free solution based on the use of a steam methane reformer (SMR). It is the technology of choice when the feedstock has a high CO2 content or a source of CO2 import is available, delivering up to 5,600 MTPD of methanol in a single train without an air separation unit.

Explore

Methanol and ammonia co-production

Partnering with KBR under a global strategic alliance, we license a ground-breaking ammonia-methanol co-production solution which combines our market leading technologies: Johnson Matthey’s PRIMARY Methanol process and KBR’s PURIFIER ammonia technology.

Explore

low-carbon-solutions

Johnson Matthey's low carbon solutions: Decarbonising the installed asset base with ready-now solutions

Explore

JM Levo Methanol

A digital platform providing customers with insightful analytics based on JM expertise and advanced data modelling, enabling more agile and better informed decisions.

Explore

Methanol

Methanol is an important and highly versatile chemical used to produce hundreds of every-day products which improve our quality of life, such as plywood, paint and adhesives. It is also a clean-burning and safe alternative to conventional fuels and a potential enabler for decarbonization.

Explore

Dehydrogenation technology

While various dehydrogenation pathways exist for different compounds, Johnson Matthey's DAVY™ technology focusses on alcohol dehydrogenation to yield an ester product.

Explore

NOx reduction FCC additives

Johnson Matthey’s range of NONOX additives are tailored to capitalise on the inherent NOx emission gradients that exist in the regenerator.

Explore

Mercury removal absorbents

Johnson Matthey is the market leader in the production of mercury removal adsorbents for the gas processing industry. Our PURASPEC range of adsorbents is tailored for effective and complete mercury removal from hydrocarbon streams.

Explore

CANS novel reactors technology

Johnson Matthey has developed a novel DAVY™ reactor design that provides increased efficiency whilst significantly reducing vessel sizes, equipment count and catalyst volumes.

Explore

Dehydration technology

Johnson Matthey's fixed-bed DAVY™ dehydration technology underpins our dimethyl ether (DME) process, which uses methanol feed and is offered to our clients as an extension to our methanol flowsheets.

Explore

Ethyl acetate process

This Johnson Matthey DAVY™ process is a breakthrough in ethyl acetate (EA) production. We have developed a process that is ideally suited for use with bio-based ethanol feeds and so offers an EA production route that is almost 100% carbon neutral.

Explore