Clear All

Showing results 581-590 / 697

Hydrogenation technology

Hydrogenation is a key part of the oxo alcohols process for the production of oxo alcohols, where aldehyde produced by hydroformylation or aldolisation is hydrogenated to produce oxo alcohols.

Explore

Oxidation technology

In terms of organic chemistry, oxidation is defined as a reaction which causes carbon to lose electron density. This can be caused by a carbon atom forming a bond with a more electronegative atom (e.g. oxygen, nitrogen), or breaking a bond with a less electronegative atom (e.g. hydrogen).

Explore

Dimethyl formamide (DMF) process

Dimethyl formamide (DMF) is produced by reacting dimethylamine with carbon monoxide in the presence of a catalyst at low temperature and pressure in a specialised reactor. Johnson Matthey license the DAVY™ DMF process, which is well-proven commercially.

Explore

Vinyl chloride monomer (VCM) process

Johnson Matthey offers a well-established VCM technology which is recognised by industry as the most advanced acetylene-to-VCM process worldwide.

Explore

Analysis of catalysts

Our highly trained technicians and scientists investigate weight loss, gas flow distribution and contamination sources of gauzes. Using world class analytical techniques we then refine new gauze designs to reduce metal losses in future campaigns.

Explore

Metallurgical solutions

We offer solutions including testing and characterisation, rapid product prototyping, inventory management, refining, recycling and metal management.

Explore

Aldolization technology

Aldolization is a key part of the oxo alcohols process where two aldehydes combine to produce a larger aldehyde which is then converted to an alcohol by hydrogenation.

Explore

CANS novel reactors technology

Johnson Matthey has developed a novel DAVY™ reactor design that provides increased efficiency whilst significantly reducing vessel sizes, equipment count and catalyst volumes.

Explore

Hydrogenolysis technology

Hydrogenolysis is a reaction where hydrogen is added to a compound and breaks that compound’s bonds, forming two molecules as a result. Johnson Matthey's DAVY™ hydrogenolysis technology reacts hydrogen gas (H2) with a vapour-phase carbonyl compound.

Explore

Dehydration technology

Johnson Matthey's fixed-bed DAVY™ dehydration technology underpins our dimethyl ether (DME) process, which uses methanol feed and is offered to our clients as an extension to our methanol flowsheets.

Explore