eLNO characterisation

Electrochemistry

Electrochemistry is an essential capability for many of our key markets from battery materials, to fuel cells, to green hydrogen production. 

Experience

60+

years' developing electrochemical technology

 
History

1839

Our platinum electrodes were used for the first demonstration of the electrochemical fuel cell effect by William Grove

We've built expertise in electrochemical technology since the 1950s when we supplied electrocatalysts to NASA for alkaline fuel cells that were used to power its space programme. We’re now using that electrochemical knowledge in a wide range of sustainable technologies to enable the decarbonisation of transport and energy.

What is electrochemistry?

Electrochemistry relates to the study of chemical changes that can be produced by electricity, or the generation of electricity by a chemical change. In electrochemistry, electricity can be generated by a redox (reduction-oxidation) reaction where electrons transfer from one reactant to another, or the electricity can force the movement of electrons causing a chemical change.

Testing of battery coin cells

How do we use electrochemistry at JM?

 

As one of our core capabilities, we use electrochemistry in a wide range of sustainable technologies including battery materials, fuel cells and green hydrogen.

Battery materials

A battery is a typical example of an electrochemical reaction producing electricity. We are developing market leading high performance battery materials for demanding applications, such as the automotive market. We’ve developed lithium iron phosphate (LFP) cathode materials for light and heavy duty vehicles, and eLNO®, our family of nickel rich advanced cathode materials, designed for high-end, long-range vehicles. These high capacity materials have industry-leading performance for automotive and power applications, and are enabling the decarbonisation of transport and energy production. 

Fuel cells

Fuel cells are another example of electrochemical energy generation needed for clean energy and clean transport. Hydrogen fuel cells generate power without releasing any harmful emissions or particulates, as the only byproduct of the process is water. We supply a range of components that drive performance in a fuel cell including membrane electrode assemblies (MEAs) and catalyst coated membranes (CCMs).

Green hydrogen 

Green hydrogen production uses renewable electricity, such as wind or solar, to split water into hydrogen and oxygen, without generating harmful emissions. We design and manufacture high performance catalyst coated membranes (CCMs), which sit at the heart of proton exchange membrane (PEM) and anion exchange membrane (AEM) electrolysers.

Creating chemicals

We also use electrochemistry to plate a thin layer of metal onto a substrate, for example we apply anti-corrosion protective coatings to components used in high temperature and harsh environments. Using electrochemical techniques, we measure, probe, model and study materials in detail to understand structures, device behaviours, alloy behaviour, reaction mechanisms and corrosion. We can predict how different material compositions will behave, make improvements and turn them into useable products.


Meeting market requirements


Our customers have specific requirements so they can deliver the qualities consumers want such as longer range, faster refuelling, and lower cost. This means that our products need high energy density, fuel efficiency, product lifetime, reduced cost, system simplicity and compactness. Each of these translate into specific technical improvements required in the electrode, catalyst, membrane and gas diffusion layer. Yet because we have a deep understanding of the interaction of materials and electrocatalysts, we know how the systems react in real life applications.


Read more

Innovation

Johnson Matthey drives world-leading fuel cell performance, increasing power density by 20%

Read Article
Clean air for all

There’s more than one road to a zero-carbon future

Read Article
Innovation

JM and Plug Power Inc. partner to accelerate delivery of advanced materials for next-generation electrolyser technology for green hydrogen

Read Article
Corporate

JM announces new net zero targets as it opens new state-of-the-art Battery Technology Centre in Oxford, UK

Read Article
Innovation

Johnson Matthey and Envision Virgin Racing announce multi year strategic partnership

Read Article
Innovation

Johnson Matthey announces manufacturing capacity for key components in Green Hydrogen

Read Article
Insights

Building the battery of the future – today

Read Article
Insights

The elements of future power

Read Article
Insights

Unlocking hydrogen’s potential

Read Article