Clear All

Showing results 177-184 / 629

Methanation technology

Our methanation technology, utilising our CRG catalysts , performs the key chemical transformation of syngas into SNG, and ensures the final product is of a suitable quality for injection into gas distribution networks.

Explore

Dimethyl ether process

DME is an alternative automotive fuel solution and can be used as fuel in diesel engines, gasoline and gas turbines. Johnson Matthey offers the DAVYâ„¢ DME process, which uses methanol feed, as an extension to our methanol flowsheet.

Explore

Methylamines process

Johnson Matthey's DAVYâ„¢ methylamines (MA) flowsheet is the most extensively licensed process of its kind in the world. As such, it is well-proven through extensive use across a majority of operating MA plants. We have continued to improve our process and today offer an improved derivative of our original design.

Explore

Pd-214

[Me4tBuXPhos Pd(allyl)]OTf | CAS Number: 1798782-29-2

Explore

Oxo alcohols process

Johnson Matthey offers oxo-alcohol processes and a complete range of catalysts suitable for oxo-alcohol manufacture. The LP OxoSM technology is the world’s leading technology for use in the manufacture of oxo alcohols from olefins.

Explore

Monoethylene glycol (MEG) process

Our new process using proprietary catalyst developed by Johnson Matthey and East­man enables the production of MEG from methanol via formaldehyde. This offers a unique and exciting opportunity for methanol and/or formaldehyde pro­ducers who are interested in diversifying their product slate.

Explore

Propylene glycol process

Our DAVYâ„¢ glycerol to propylene glycol (GPG) process is a perfect fit for our DAVY biodiesel process as the by-product, glycerol, can be fed to an adjoining GPG plant.

Explore

Ethyl acetate process

This Johnson Matthey DAVYâ„¢ process is a breakthrough in ethyl acetate (EA) production. We have developed a process that is ideally suited for use with bio-based ethanol feeds and so offers an EA production route that is almost 100% carbon neutral.

Explore