Clear All

Showing results 571-580 / 628

FLEXI Methanol technology

Our FLEXI Methanol process is a robust technology for medium to large capacity plants which delivers consistent, high performance and which is used today in the most energy efficient methanol plants in the world.

Explore

PRIMARY Methanol technology

Our well-established PRIMARY Methanol process is an oxygen-free solution based on the use of a steam methane reformer (SMR). It is the technology of choice when the feedstock has a high CO2 content or a source of CO2 import is available, delivering up to 5,600 MTPD of methanol in a single train without an air separation unit.

Explore

Methanol and ammonia co-production

Partnering with KBR under a global strategic alliance, we license a ground-breaking ammonia-methanol co-production solution which combines our market leading technologies: Johnson Matthey’s PRIMARY Methanol process and KBR’s PURIFIER ammonia technology.

Explore

Acetylene conversion catalysts

We offer catalysts for selective hydrogenation, for both ethylene plant configurations: front-end and tail-end.

Explore

Environmental oxidation process

Environmental concerns about industrial emissions to air and water have been continually growing. In response, Johnson Matthey has targeted key issues by applying our expertise in catalysts and catalytic technology.

Explore

Methanation catalysts

Methanation is the reaction by which carbon oxides and hydrogen are converted to methane and water. The reaction is catalysed by nickel catalysts. In industry, there are two main uses for methanation, to purify synthesis gas (i.e. remove traces of carbon oxides) and to manufacture methane.

Explore

Amination technology

Amines are compounds derived from ammonia and contain a nitrogen atom with a lone electron pair. Amination is the process by which an amine group is added to an organic compound.

Explore

Oxidation technology

In terms of organic chemistry, oxidation is defined as a reaction which causes carbon to lose electron density. This can be caused by a carbon atom forming a bond with a more electronegative atom (e.g. oxygen, nitrogen), or breaking a bond with a less electronegative atom (e.g. hydrogen).

Explore

Dehydrogenation technology

While various dehydrogenation pathways exist for different compounds, Johnson Matthey's DAVYâ„¢ technology focusses on alcohol dehydrogenation to yield an ester product.

Explore

CANS novel reactors technology

Johnson Matthey has developed a novel DAVYâ„¢ reactor design that provides increased efficiency whilst significantly reducing vessel sizes, equipment count and catalyst volumes.

Explore