Clear All

Showing results 541-600 / 631

Acetylene conversion catalysts

We offer catalysts for selective hydrogenation, for both ethylene plant configurations: front-end and tail-end.

Explore

Environmental oxidation process

Environmental concerns about industrial emissions to air and water have been continually growing. In response, Johnson Matthey has targeted key issues by applying our expertise in catalysts and catalytic technology.

Explore

CANS novel reactors technology

Johnson Matthey has developed a novel DAVY™ reactor design that provides increased efficiency whilst significantly reducing vessel sizes, equipment count and catalyst volumes.

Explore

Purified terephthalic acid (PTA) process

A successful collaboration between Johnson Matthey and Dow has achieved a breakthrough PTA process offering improved economics, competitiveness and reliability while delivering a quality PTA product.

Explore

CO2 to methanol

Methanol produced using electrolytic hydrogen is an attractive alternative and potentially carbon neutral fuel. It can be directly used as a road and maritime transportation fuel or as a low carbon intensity intermediate to produce Sustainable Aviation Fuel (SAF) or green gasoline.

Explore

SWITCH Methanol technology

Johnson Matthey’s award-winning SWITCH Methanol process delivers minimal direct CO2 emissions without the additional investment, running costs and complexity of carbon capture. It is ready to receive renewable electricity and it enables methanol producers to meet their sustainability goals as we transition to a low-carbon economy.

Explore

FLEXI Methanol technology

Our FLEXI Methanol process is a robust technology for medium to large capacity plants which delivers consistent, high performance and which is used today in the most energy efficient methanol plants in the world.

Explore

PRIMARY Methanol technology

Our well-established PRIMARY Methanol process is an oxygen-free solution based on the use of a steam methane reformer (SMR). It is the technology of choice when the feedstock has a high CO2 content or a source of CO2 import is available, delivering up to 5,600 MTPD of methanol in a single train without an air separation unit.

Explore

Methanation catalysts

Methanation is the reaction by which carbon oxides and hydrogen are converted to methane and water. The reaction is catalysed by nickel catalysts. In industry, there are two main uses for methanation, to purify synthesis gas (i.e. remove traces of carbon oxides) and to manufacture methane.

Explore

Amination technology

Amines are compounds derived from ammonia and contain a nitrogen atom with a lone electron pair. Amination is the process by which an amine group is added to an organic compound.

Explore

Oxidation technology

In terms of organic chemistry, oxidation is defined as a reaction which causes carbon to lose electron density. This can be caused by a carbon atom forming a bond with a more electronegative atom (e.g. oxygen, nitrogen), or breaking a bond with a less electronegative atom (e.g. hydrogen).

Explore

Dehydrogenation technology

While various dehydrogenation pathways exist for different compounds, Johnson Matthey's DAVY™ technology focusses on alcohol dehydrogenation to yield an ester product.

Explore

Bottoms upgrading FCC additive

Information on bottoms upgrading FCC additive.

Explore

CO oxidation FCC additives

Johnson Matthey's CO oxidation FCC additives include platinum and non-platinum promoters for effective afterburn control and CO emissions reduction.

Explore

Olefin purification catalysts

We can provide a full range of products to ensure an economic purification solution.

Explore

PURACARE service

PURACARE tailored service is designed to take care of all aspects of operation, maintenance and absorbent/catalyst recycling for our global customers in the Gas Processing industry.

Explore

Secondary reforming catalysts

The range of KATALCO QUADRALOBE secondary reforming catalysts provide both high stability and high activity, allowing us to offer the best mix of activity, pressure drop and high temperature stability for your application.

Explore

Steam methane reforming catalysts

Selecting the right steam methane reforming catalyst is crucial for the production rates and plant efficiency of hydrogen, ammonia and methanol plants.

Explore

Pre-reforming catalysts

Johnson Matthey has a long legacy in pre-reforming catalysts dating back to the 1960s and offers the CRG series of catalysts.

Explore

Reforming catalysts

Optimise SMR with Johnson Matthey's unique reforming catalysts for ammonia, methanol, hydrogen, and GTL. Efficiently reforming a wide range of feedstocks.

Explore

FORMOX formaldehyde process

Johnson Matthey license the FORMOX™ formaldehyde process, with plant capacities ranging from 70 MTPD to nearly 840 MTPD. The process enables the production of concentrations up to 55%, which means reduced costs of downstream production, storage and transport.

Explore

Ethyl acetate process

This Johnson Matthey DAVY™ process is a breakthrough in ethyl acetate (EA) production. We have developed a process that is ideally suited for use with bio-based ethanol feeds and so offers an EA production route that is almost 100% carbon neutral.

Explore

Fluorination catalysts

Johnson Matthey's fluorination catalysts are based on chromia for the vapour phase fluorination of alkenes and halocarbons with HF for the production of a wide range of fluorochemicals.

Explore

High temperature shift catalysts

Read about our high temperature shift catalysts. Our latest high activity products are the result of extensive catalyst development in high temperature duties.

Explore

De-aromatisation catalysts

Depending on feedstock, operating conditions and desired end product specification, our experienced technical specialists will advise you on the most appropriate HTC type - or a combination thereof.

Explore

Dehydrogenation catalysts

Johnson Matthey offers a variety of different dehydrogenation catalysts for different markets, including the manufacture of caprolactam and olefins.

Explore

Hydrochlorination technology

Hydrochlorination involves adding hydrogen chloride across the multiple bond of an unsaturated hydrocarbon. Johnson Matthey's DAVY™ hydrochlorination technology focuses on alkyne (triple-bonded) reactants.

Explore

Hydrogenation catalysts

Explore Johnson Matthey's hydrogenation catalysts, offering base metal and precious metal solutions for selective and total hydrogenation applications.

Explore

Ammonia synthesis catalysts

Johnson Matthey offers high-performance ammonia synthesis catalysts, including KATALCO™ series, ensuring long lifetimes and efficient ammonia production.

Explore

Hydroformylation technology

Hydroformylation is the process by which an olefin (alkene) reacts with syngas (CO and H2) to form an aldehyde. Also commonly known as the “Oxo” process, hydroformylation is the first step in the production of oxo alcohols with the intermediate aldehyde converted to an alcohol by hydrogenation.

Explore

Environmental catalysts

Environmental concerns about industrial emissions to air and water have been continually growing. In response, Johnson Matthey has targeted key issues by applying our expertise in catalysts and catalytic technology.

Explore

Biorenewable catalysts

Following recent environmental legislation and an increasing awareness on the part of product manufacturers for sustainable products, the need to replace non-renewable fossil raw materials is more apparent than ever.

Explore

Choline chloride process

Our DAVY™ choline chloride technology includes a continuous single-stream process in which ethylene oxide, hydrochloric acid, trimethylamine (TMA) are reacted under moderate conditions to produce choline chloride.

Explore

Turbocharger and steam utilisation process

In most high power cost situations, a turbocharger is the preferred design with short payback on the extra investment.

Explore

Sour shift catalysts

Johnson Matthey is the world's leading supplier of sour shift catalysts with the KATALCO K8-11 series of products.

Explore

Other shift catalysts

Medium temperature shift (MTS) and isothermal shift (ITS) catalysts are becoming more common in use.

Explore

New processes

Expansion of our DAVY™ process portfolio is a key element of our business strategy, and this is accomplished by a combination of in-house developments, acquisition and collaborative programmes.

Explore

Natural detergent alcohols process

Johnson Matthey has licensed the greatest number of plants worldwide for the production of natural detergent alcohols (NDA), also known as fatty alcohols.

Explore

Oxo alcohols process

Johnson Matthey offers oxo-alcohol processes and a complete range of catalysts suitable for oxo-alcohol manufacture. The LP OxoSM technology is the world’s leading technology for use in the manufacture of oxo alcohols from olefins.

Explore

NOx reduction FCC additives

Johnson Matthey's NONOX™ FCC additives deliver up to 40% NOx reduction in full and partial burn regenerators, minimising costs and meeting emissions limits.

Explore

ZSM additives

When propylene demand is high, Johnson Matthey’s ZSM-5 based additives are highly selective for cracking low octane gasoline range molecules to C3 and C4 olefins with no increase in coke or C2 and lighter gases.

Explore

Sulphur oxide reduction FCC additives

Johnson Matthey’s SUPER SOXGETTER and LO-SOX PB families of SOx reduction additives have been developed to decrease the cost of removing SOx from the FCC flue gas in full burn, partial burn and two-stage regenerators.

Explore

Methanation technology

Our methanation technology, utilising our CRG catalysts , performs the key chemical transformation of syngas into SNG, and ensures the final product is of a suitable quality for injection into gas distribution networks.

Explore

MAPD conversion catalysts

The removal of MAPD from crude propylene produces polymer grade propylene. We offer catalysts for MAPD converters configured as vapour phase or liquid phase reactors, to suit the plant's needs.

Explore

Total saturation catalysts

We offer a range of palladium and nickel based catalysts for total saturation duties.

Explore

Reforming technologies (ATR, GHR, SMR)

Johnson Matthey's DAVY™ reforming technologies transform natural gas into synthesis gas (syngas, predominantly CO, CO2 and H2) . Syngas is a feedstock for the DAVY gas to liquids (GTL) and methanol processes.

Explore

Vinyl chloride monomer (VCM) process

Johnson Matthey offers a well-established VCM technology which is recognised by industry as the most advanced acetylene-to-VCM process worldwide.

Explore

Synthesis technology

Johnson Matthey's DAVY™ synthesis technologies convert syngas (CO, CO2 & H2) to methanol creating exothermic reactions that have a limited conversion rate, so several passes through a reactor are required to produce sufficient methanol.

Explore

Mercury removal absorbents

Johnson Matthey is the market leader in the production of mercury removal adsorbents for the gas processing industry. Our PURASPEC range of adsorbents is tailored for effective and complete mercury removal from hydrocarbon streams.

Explore

Chloride removal absorbents

View Johnson Matthey’s PURASPEC CLEAR chloride absorbents for the oil and gas industry.

Explore

Getters absorbents

PROTELEC getter materials are used to ensure a hermetic (sealed) environment is available within electronics packages such as source lasers, gyroscopes, microwaves and medical packaging, to prevent premature device failure.

Explore

Arsine removal absorbents

The PURASPEC product range contains a specially designed absorbent which is selective for the removal of arsine from natural gas streams. PURASPEC material is proven in the field for the last 15 years for arsine removal from natural gas streams.

Explore

Methylamines process

Johnson Matthey's DAVY™ methylamines (MA) flowsheet is the most extensively licensed process of its kind in the world. As such, it is well-proven through extensive use across a majority of operating MA plants. We have continued to improve our process and today offer an improved derivative of our original design.

Explore

Monoethylene glycol (MEG) process

Our new process using proprietary catalyst developed by Johnson Matthey and East­man enables the production of MEG from methanol via formaldehyde. This offers a unique and exciting opportunity for methanol and/or formaldehyde pro­ducers who are interested in diversifying their product slate.

Explore

Propylene glycol process

Our DAVY™ glycerol to propylene glycol (GPG) process is a perfect fit for our DAVY biodiesel process as the by-product, glycerol, can be fed to an adjoining GPG plant.

Explore

Formaldehyde plant range

The latest FORMOX™ plant design is a step further in the evolution of our plant technology.

Explore

low-carbon-solutions

Johnson Matthey's low carbon solutions: Decarbonising the installed asset base with ready-now solutions

Explore

Dimethyl ether process

DME is an alternative automotive fuel solution and can be used as fuel in diesel engines, gasoline and gas turbines. Johnson Matthey offers the DAVY™ DME process, which uses methanol feed, as an extension to our methanol flowsheet.

Explore